
CLASSIC AND NEW DATA STRUCTURE PROBLEMS IN

EXTERNAL MEMORY

by

Zhewei Wei

A Thesis Submitted to

The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

in Computer Science and Engineering

February 2012, Hong Kong

c© 2012 Zhewei Wei

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis

to other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce

the thesis by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

Zhewei Wei

2 February 2012

ii

CLASSIC AND NEW DATA STRUCTURE PROBLEMS IN

EXTERNAL MEMORY

by

Zhewei Wei

This is to certify that I have examined the above PhD thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Dr. Ke Yi, Thesis Supervisor

Prof. Mounir Hamdi, Head of Department

Department of Computer Science and Engineering

2 February 2012

iii

Acknowledgments

I would like to give my sincere thanks to the many people who have made my PhD years

such a wonderful time.

First and formost, I am deeply grateful to my advisor, Dr. Ke Yi. You have been

supportive since the first day I came to HKUST, and have oriented and guided me with

patience and care throughout my PhD studies. Your passion for research and science

sets an example, and encourages me to continue my career as an academic researcher in

computer science. Above all, you are also a generous friend, which I always appreciate

from my heart.

My debt of gratitude also goes to the co-authors of all my research papers: Pankaj

Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Rasmus Pagh, Lu Wang, Ke

Yi, and Qin Zhang. It has been a pleasure to work with all of you, and I have learned a

lot from your insights.

The theoretical computer science group has provided a very nice working environment

for the past four years. I have benefited greatly from the discussions with a number

of faculty members and graduate students in the group. For this I would like to thank

Sunil Arya, Siu-Wing Cheng, Mordecai Golin, Zengfeng Huang, Jiongxin Jin, Ge Luo, Lu

Wang, Qi Wang, Yajun Wang, Jian Xia and Qin Zhang. Your inspiring suggestions and

comments are much appreciated.

I am also indebted to Feifei Li and Pankaj Agarwal, for hosting me during my visits

to Florida State University and Duke University.

Many thanks to Siu-Wing Cheng, Mordecai Golin, Yitong Yin and Xiangtong Qi, who

serve on my PhD examination committee.

I am fortunate to have spent my PhD years at The Hong Kong University of Science

and Technology. The stunning seaside campus has always been a source of inspiration,

for both my research and photography. I am also grateful for making so many wonderful

friends in this campus. A big thank you goes to Shan Chen, Shaoming Huang, Zhifeng

Lai, Yueqi Li, Tengfei Liu, Lixing Wang and Pingzhong Tang. My PhD life would not be

so enjoyable without you.

Lastly but most importantly, I want to thank my family for their support and encour-

agement. Special thanks also go to Wenxin Yu, for all her love and support. I dedicate

this dissertation to them.

iv

Table of Contents

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

List of Figures vii

Abstract viii

Chapter 1 Introduction 1

1.1 Models 3

1.1.1 The RAM Model 3

1.1.2 The I/O Model 3

1.1.3 The Cache-Oblivious Model 4

1.2 The Dictionary Problem 5

1.2.1 Classic results on hash tables 5

1.2.2 Buffering for Dynamic External Hashing 7

1.2.3 Cache-Oblivious Hashing 8

1.3 Equivalence between Priority Queues and Sorting in External Memory 9

1.4 Summary Queries 10

Chapter 2 Dynamic External Hashing 12

2.1 Introduction 12

2.2 Lower Bounds 14

2.3 Lower Bounds for Randomized Hash Tables 20

2.4 Upper Bounds 21

Chapter 3 Cache-Oblivious Hashing 24

3.1 Introduction 24

3.2 Analysis of Linear Probing in the Cache-Oblivious Model 25

3.3 Blocked Probing 27

3.3.1 Algorithm description 27

3.3.2 Cache-oblivious analysis of blocked probing 28

3.3.3 Cache-oblivious dynamic hash tables 32

3.4 Lower Bounds 33

3.4.1 The model 33

3.4.2 Good inputs and bad inputs 34

3.4.3 Lower bound for the boundary-oblivious model 36

v

3.4.4 Lower bound for the block-size-oblivious model 36

Chapter 4 Equivalence between Priority Queues and Sorting in External Memory 40

4.1 Introduction 40

4.2 Structure 42

4.3 Operations 44

4.4 Analysis of Amortized I/O Complexity 50

Chapter 5 Data Structure for Summary Queries 53

5.1 Introduction 53

5.1.1 Related work on data structure for aggregation queries 53

5.1.2 Related work on summaries 54

5.1.3 Other related work 56

5.1.4 Our results 56

5.2 A Baseline Solution 57

5.3 Optimal Data Structure for F1 Based Summaries 58

5.3.1 Optimal internal memory structure 59

5.3.2 Optimal external memory data structure 61

5.4 Summaries 66

5.4.1 Heavy hitters 66

5.4.2 Quantiles 68

5.4.3 The Count-Min sketch 70

5.4.4 The AMS sketch and wavelets 73

5.5 Handling Updates 73

Chapter 6 Future Directions 75

6.1 External Hashing 75

6.2 Summary Queries 75

Bibliography 77

vi

List of Figures

1.1 The I/O model. 4

2.1 The query-insertion tradeoff. 13

3.1 When two I/Os are needed. 33

4.1 The components of the priority queue. 43

5.1 A schematic illustration of our internal memory structure. 60

5.2 The standard B-tree blocking of a binary tree. 62

5.3 The summaries we store for an internal block B. 63

5.4 A schematic illustration of our packed structure. 65

vii

CLASSIC AND NEW DATA STRUCTURE PROBLEMS IN

EXTERNAL MEMORY

by

Zhewei Wei

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Abstract

The demand of efficient data structures for query processing on massive data sets has

grown tremendously in the past decades. Traditionally, data structures are designed and

analyzed in the RAM model, where each memory cell can be accessed with unit cost.

This assumption, however, is unrealistic for modeling modern memory hierarchies which

consist of many levels of memories and caches with different sizes and access costs. As

a consequence, a number of more elaborate models were introduced. Among them the

most successful ones are the I/O model and the cache-oblivious model. In recent years,

designing data structures that are I/O-efficient or cache-oblivious has become an active

direction in both the theory and database communities.

This thesis starts by considering the dictionary problem, one of the most basic data

structure problems, in which we want to store and access a set of (key, data) pairs. Hash

tables are the most efficient and the most fundamental data structure for implementing

a dictionary. In this thesis we study hash tables in both the I/O model and the cache-

oblivious model. We first show an inherent query-insertion tradeoff of hashing in the I/O

model, which implies that the buffering technique is essentially useless for hash tables. In

the cache-oblivious model, we build a hash table that achieves the same search cost as its

cache-aware version does, for all block sizes.

The second problem studied is another fundamental data structure problem, priority

queues. The priority queue problem is well understood in the comparison based I/O model,

where its complexity is known to be the same as sorting. In this thesis, we establish their

equivalence in the I/O model without any restrictions, by providing a reduction from

priority queues to sorting. Note that the other direction of the reduction is trivial.

The third problem studied in this thesis is the summary query problem, which is

viii

a natural generalization of the range searching problem. Our goal is to design data

structures that allow for extracting a statistical summary of all the records in the query

range. The summaries we support include frequent items, quantiles, various sketches, and

wavelets, all of which are of central importance in massive data analysis.

ix

Chapter 1

Introduction

The demand of efficient data structures for query processing on massive data sets has

grown tremendously in the past decades. These data sets could easily reach the order of

terabytes or even petabytes, and the rate of this information explosion is still accelerating.

A new challenge for computer scientists and engineers is to develop techniques that keep

up with this increasing rate.

Traditionally, data structures and algorithms are designed and analyzed in the RAM

model, where a unit cost for accessing each memory cell is assumed. However, this as-

sumption is unrealistic for modeling modern memory hierarchies. A modern computer

usually consists of several memory levels with different sizes and access costs. One strong

justification for abandoning the RAM model is the fact that accessing a block on a disk

is millions of times slower than accessing the main memory. As a consequence, a number

of more elaborate memory hierarchy models were introduced. Among them the most

successful ones are the I/O model (a.k.a. external memory model) and the cache-oblivious

model. The I/O model, introduced by Aggarwal and Vitter [4], considers a two-level mem-

ory hierarchy: a small and fast internal memory, and a slow but conceptually unlimited

external memory. Data is transferred between internal and external memory in terms of

blocks, and the cost of an algorithm in this model is the number of block transfers (or

I/Os). Recently Frigo [30] proposed the cache-oblivious model which takes the approach

of making the data structures unaware of the block size and internal memory size, so that

an optimal cache-oblivious algorithm or data structure is simultaneously optimal with

respect to any two neighboring levels in a memory hierarchy with any number of levels.

The dictionary problem is one of the most basic data structure problems, in which

we want to store and access a set of keys, where each key is associated with some data.

Designing data structures for the dictionary problem has received a lot of attention in both

the theory and database communities. Among these works, hash tables are arguably the

most efficient way to implement a dictionary. A hash table supports all of the dictionary

operations, namely, query, insertion and deletion, in expected constant time. It works

especially well in external memory, where the storage is divided into disk blocks, each

containing up to B items. Thus collisions happen only when more than B items are hashed

to the same location. Large blocks help to push the performance of external hash tables

to the limit: Using some common collision resolution strategies such as linear probing or

1

chaining, Knuth [47] showed that, under the ideal random hash function assumption, the

expected average cost of a query is merely 1 + 1/2Ω(B) I/Os. As typical values of B range

from a few hundreds to a thousand, the query cost is extremely close to just one I/O.

In this thesis, we study hash tables in both the I/O model and the cache-oblivious

model. The first result is on the inherent query-insertion tradeoff of hashing in the I/O

model, where a memory buffer is available for batching up newly inserted keys. Indeed,

one could find many examples, such as the buffer tree [9] and priority queues [10, 25],

in which the memory is used as a buffer space to batch up insertions and we can write

them to disk periodically, fully utilizing the parallelism within one I/O and reducing the

amortized insertion cost. We will investigate the possibility of lowering the insertion cost

of a dynamic hash table by buffering without sacrificing its near-perfect query perfor-

mance. The second result in this thesis concerns the performance of hash tables in the

cache-oblivious model, where we encounter the challenge of designing a hash table that

is unaware of the block size. Our goal is to lay out a hash table such that its search cost

matches its cache-aware version, for all block sizes B.

The priority queue is an abstract data structure of fundamental importance. A priority

queue maintains a set set of keys, each associated with some data, under insertion, deletion

and findmin operations. A findmin operation returns the current minium key in the

priority queue along with its associated data. The priority queue is closely related to

the sorting algorithm due to the fact that a priority queue can be use to implement a

sorting algorithm. Thorup [66] proved that the converse is also true in the RAM model.

In particular, he designed a priority queue that uses the sorting algorithm as a black box,

such that the update time of the priority queue is asymptotically the same as the per

key cost of sorting. In this thesis, we investigate the possibility of establishing such a

reduction in external memory. We show that priority queues are almost computationally

equivalent to sorting in external memory. The reduction provides a possibility for proving

lower bound for external sorting via showing a lower bound for priority queues.

In this thesis we also propose and study the summary query problem, a generalization

of the classic range searching problem. Range searching queries can be broadly classified

into two categories: reporting queries and aggregation queries. The former retrieves a

collection of records from the data set that match the query’s conditions, while the latter

returns an aggregate, such as count, sum, average, or max (min), of a particular attribute

of these records. However, reporting and aggregation queries provide only two extremes

for exploring the data. Data analysts often need more insight into the data distribution

than what those simple aggregates provide, and yet certainly do not want the sheer volume

of data returned by reporting queries. In this thesis, we design data structures that allow

for extracting a statistical summary of all the records in the query. The summaries we

2

support include frequent items, quantiles, various sketches, and wavelets, all of which are

of central importance in massive data analysis.

1.1 Models

1.1.1 The RAM Model

The most commonly used model for designing data structures is the unit-cost word RAM.

In this model the memory is an array of bit strings called words. Each word consists of w

bits, for a positive integer parameter w, called the word length. In the thesis we assume

the universe [U] = {0, . . . , 2w−1}, or equivalently w = logU . This assumption is referred

to as the trans-dichotomous assumption [28]. All computation takes place in the CPU

that has a constant number of words of registers, on which standard operations on words

can be carried out in constant time. We adopt the multiplication model, whose instruction

set includes addition, bit-wise boolean operations, shifts, and multiplication. We measure

the space requirement of a word-RAM algorithm in units of w-bit words. Since access-

ing memory is much slower than executing instructions, typically an algorithm’s cost is

measured only by the number of memory words it accesses.

A major drawback of RAM is the lack of ability to capture the fundamental charac-

teristics of modern hierarchical memory systems. As a consequence, a number of more

elaborate models have been introduced in recent years. Among them the I/O model and

the cache-oblivious model are the most successful ones. In this thesis we will mainly con-

sider these two models, but the RAM model will serve as a basis for designing our data

structures.

1.1.2 The I/O Model

The I/O model, introduced by Aggarwal and Vitter [4] in 1988, is the most widely used

model for building and analyzing external memory data structures. In this model we con-

sider a two-level memory hierarchy: a slow but conceptually unlimited external memory

and a fast internal memory of size M . All computation takes place on data in internal

memory, and the transfer of data between internal and external memory takes place in

blocks of B consecutive words; the complexity of an algorithm is the number of such I/Os

(sometimes called block transfers) it performs. It is assumed that algorithms have com-

plete control over transfers of blocks between the two levels. Please refer to Figure 1.1.

The I/O model captures the essence of the memory hierarchy when the memory transfer

between two levels of the memory hierarchy dominates the running time, and it is suffi-

ciently simple to make analysis of algorithms feasible. By now, a large number of results

3

for the I/O model have been obtained — see the surveys by Arge [8] and Vitter [69].

CPU

B

Internal memory
of size M

External memory
of unlimited size

Figure 1.1: The I/O model.

1.1.3 The Cache-Oblivious Model

The disadvantage of the I/O model is that the blocking of a data structure must be

programmed delicately, resulting in programs that do not adapt well when the dominating

memory level changes. Starting in the late 90’s, tremendous efforts have been devoted

to the design and analysis of data structures that work well not only in a two-level

memory model, but also in a memory hierarchy that consists of any number of levels,

where each level has a different capacity M and block size B. Among them, the most

successful approach is the cache-oblivious model [30] due to its elegance and simplicity.

The cache-oblivious model is very similar to the I/O model, the only difference being

that a cache-oblivious data structure is unaware of the parameter B and M . In other

words, a cache-oblivious algorithm is formulated in the RAM model but analyzed in the

I/O model, with the analysis required to hold for any B and M . The main idea of the

cache-oblivious model is that by avoiding any memory-specific parametrization, the cache-

oblivious algorithm has an optimal number of memory transfers between all levels of an

unknown, multilevel memory hierarchy. Thus the cache-oblivious model is effectively a

way of modeling a complicated multi-level memory hierarchy using the simple two-level

I/O-model.

Another major benefit of cache-oblivious algorithms and data structures is that they

achieve their guaranteed performance without any hardware-specific tuning. This is par-

ticularly important in autonomous databases, and is in fact the main motivation of the

recent efforts in bringing cache-oblivious techniques to databases, such as EaseDB [41].

4

1.2 The Dictionary Problem

The dictionary is an important class of data structures in computer science. Given a

subset D of a universe [U], a dictionary stores D, such that the following queries can be

answered efficiently:

- Membership: Given a key x ∈ [U], does x belong to D?

A static dictionary is one that does not change over time. A dynamic dictionary should

also support updates:

- Insertion: Include x into the dictionary;

- Deletion: Remove x from the dictionary.

In many applications each key of D is associated with some data, and insertion will

include a pair (key, data) into the dictionary. The lookup operation is considered in these

applications:

- Lookup: Does x belong to D? If so, what is its associated data?

1.2.1 Classic results on hash tables

Hash tables are the most efficient way for implementing a dictionary. They are arguably

one of the most fundamental data structures in computer science, due to their simplicity of

implementation, excellent performance in practice, and many nice theoretical properties.

A hash table supports all of the above dictionary operations in expected constant time.

Based on the output, the lookup operation for hash tables are usually divided into two

categories:

- Successful query: For a queried key that is present in the table, retrieve the data

associated with it;

- Unsuccessful query: For a queried key that is not present in the table, return “not

found”.

Hash table is also one of the simplest data structures. Let N be the size of D. Let

h : [U] → [R] be a hash function, where [U] is the universe of the keys and [R] is the

memory range. The table has size R > N and we simply store key x in position h(x).

If that position already contains some other key, one can use various collision resolution

strategies, among which chaining and linear probing are the most common ones. In

chaining, we simply store all keys that are mapped to the same position in a list associated

5

with that position. In linear probing, if position h(x) is already occupied when x is being

inserted, we successively probe positions h(x), h(x) + 1, . . . , R− 1, 0, 1, . . . , h(x)− 1 until

an empty position is found and we will put x there. To perform a search on x, we follow

the same probing sequence, until x is found or an empty position is encountered, in which

case we know that x is not stored in the table. It is known that linear probing generally

outperforms chaining in practice due to its sequential access pattern, provided that the

load factor α = N/R is not too close to 1.

The mathematical analysis of hashing is usually considered as the birth of analysis of

algorithms [47], and it is still attracting a lot of attention nowadays. Most analyses on

hashing assume h is a truly random function, i.e., each h(x) is independently uniformly

distributed on [R]. Under such an assumption, Knuth [47] showed that the expected

average number of probes during a search using linear probing is (averaged over all keys):

CN ≈ 1
2

(
1 + 1

1−α
)

(successful lookup);

C ′N ≈ 1
2

(
1 +

(
1

1−α
)2
)

(unsuccessful lookup).

Thus, for a typical load factor α = 0.7, we expect to make 2.17 probes if the searched key

is in the table, and 6.05 probes if it is not.

Hashing with limited independence

The classic results assume that the hash function h distributes each key x independently

uniformly on R. Such a function is called a truly random function. This assumption

is unrealistic, since to simply store a truly random hash function requires U logR bits.

To bridge the gap between hashing algorithms and their analysis, Carter and Wegman

introduced universal hashing [21]. A family H of functions from [U] to [R] is k-wise

independent if for any k distinct elements x1, . . . , xk ∈ [U] and h chosen uniformly at

random from H, the random variables h(x1), . . . , h(xk) are independent. We refer to the

variable

ᾱ
def
= N · max

x∈[U],ρ∈[R]
Pr
h∈H

[h(x) = ρ]

as the maximum load of H. If H distributes hash function values of all elements of U

uniformly on R, we will have ᾱ = α, and in general ᾱ > α. We assume that all families

used in this thesis are uniform so we do not distinguish ᾱ from α. For non-uniform

families, all results in this thesis hold if we substitute α with ᾱ.

Carter and Wegman [73] exhibited the following family of k-wise independent hash

functions where U = p is a prime:

Hk =
{
h : h(x) =

(
(ak−1x

k−1 + · · ·+ a0) mod p
)

mod R, aj ∈ [p]
}
.

6

This could be easily verified: observe that the family of degree k − 1 polynomials in the

finite field Zp is k-wise independent; to obtain a smaller range [R] we may map integers

in [p] down to [R] by a modulo R operation. This operation preserves independence,

only making the family (slightly) non-uniform. Specifically, the maximum load ᾱ for this

family is in the range [α, (1 +R/p)α]. By choosing p much larger than R we can make ᾱ

arbitrarily close to α.

External Hashing

Hash tables work especially well in external memory, where the storage is divided into disk

blocks, each containing up to B items. Thus collisions happen only when there are more

than B items hashed to the same location. Large blocks help to push the performance

of external hash tables to the limit: Knuth [47] showed that under the truly random

hash function assumption, the external version of linear probing has a search cost of

tq = 1+1/2Ω(B) I/Os (for both successful and unsuccessful searches), where B is the block

size. Here and further we assume that the load factor α is bounded away from 1. In the

external version of linear probing, the table consists of R/B blocks, and correspondingly

we use a hash function h : [U] → [R/B]. To do a search on x, we successively access

blocks h(x), h(x) + 1, . . . until x is found or a non-full block is encountered. The intuitive

explanation for this extremely close-to-one I/O cost is that since a block has size B, we

will not have a collision unless more than B keys are hashed into this block, which happens

with probability exponentially small in B. Knuth [47] actually derived the constant in the

big-Omega, showing that for reasonably large B (larger than 10), the number of I/Os is

very close to 1, much smaller than the number of probes. Meanwhile, a natural external

version of chaining also achieves the same bound. If one wants to maintain the load factor

we can periodically rebuild the hash table using schemes like extensible hashing [27] or

linear hashing [51], and this only adds an extra cost of O(1/B) I/Os amortized. Jensen

and Pagh [44] demonstrate how to maintain the load factor at α = 1 − O(1/B
1
2) while

still supporting queries in 1 +O(1/B
1
2) I/Os and updates in 1 +O(1/B

1
2) I/Os.

1.2.2 Buffering for Dynamic External Hashing

In Chapter 2 we study the problem of buffering updates for dynamic external hash tables,

that is, achieving o(1) amortized I/O cost for updates. As mentioned previously, in the

I/O model, the internal memory can be used as a buffer space to batch up insertions

and write them to disk periodically, fully utilizing the parallelism within one I/O and

reducing the amortized insertion cost. The abundant research in the area of I/O-efficient

data structures has witnessed this phenomenon numerous times, where the insertion cost

7

can be typically brought down to close to O(1/B) I/Os. Examples include the simplest

structures like stacks and queues, to more advanced ones such as the buffer tree and

priority queues. Many of these results hold as long as the buffer has just a constant

number of blocks; some require a larger buffer of Θ(B) blocks (known as the tall cache

assumption). Please see the book by Vitter [70] for a complete account of the power of

buffering.

Therefore the natural question is, can we (or not) lower the insertion cost of a dynamic

hash table by buffering without sacrificing its near-perfect query performance? Jensen

and Pagh [44] recently conjectured that the insertion cost must be Ω(1) I/Os if the query

cost is required to be O(1) I/Os.

In Chapter 2, we partially confirm this conjecture. Specifically, we show that for

any constant c > 1, if the expected average successful query cost is targeted at 1 +

O(1/Bc) I/Os, then it is not possible to support insertions in less than 1 − O(1/B
c−1
6)

I/Os amortized, which means that the memory buffer is essentially useless. While if the

query cost is relaxed to 1+O(1/Bc) I/Os for any constant c < 1, there is a simple dynamic

hash table with o(1) insertion cost.

1.2.3 Cache-Oblivious Hashing

In Chapter 3 we study the problem of building a cache-oblivious hash table with linear

space and supports efficient lookup operations. Note that the external versions of linear

probing and chaining mentioned above only work for a single B, so they are not cache-

oblivious. In Chapter 3, we investigate whether it is possible to lay out a hash table such

that its search cost matches its cache-aware version, i.e., 1 + 1/2Ω(B) I/Os, for all block

sizes B.

We first show that linear probing, a classical collision resolution strategy for hash

tables, can be easily made cache-oblivious but it only achieves tq = 1 + Θ(α/B) even

if a truly random hash function is used. Then we demonstrate that the block probing

algorithm [59] achieves tq = 1 + 1/2Ω(B), thus matching the cache-aware bound, if the

following two conditions hold: (a) B is a power of 2; and (b) every block starts at a

memory address divisible by B. We also analyze the performance of blocked probing

when the hash function has limited independence. Note that the two conditions hold on

a real machine, although they are not stated in the cache-oblivious model. Interestingly,

we also show that neither condition is dispensable: if either of them is removed, the best

obtainable bound is tq = 1 +O(α/B), which is exactly what linear probing achieves.

8

1.3 Equivalence between Priority Queues and Sort-

ing in External Memory

A priority queue is a data structure that maintains a dynamic ordered set of keys, along

with associated data. The basic operations are: insertion of a key, deletion of a key,

and finding the smallest key. The complexity of the priority queue is closely related to

the sorting algorithm. It is well known that a priority queue can be use to implement a

sorting algorithm: we simply insert all keys to be sorted into the priority queue, and then

repeatedly delete the minimum key to extract the keys in sorted order. Thorup showed

that the converse is also true in the RAM model. In particular, he showed that given

a sorting algorithm that sorts N keys in N · S(N) time, there is a priority queue that

uses the sorting algorithm as a black box, and supports any of the three operations in

O(S(N)) time. The reduction uses linear space. The main implication of this reduction is

that we can regard the complexity of internal priority queues as settled, and just focus on

establishing the complexity of sorting. However, Thorup’s priority queue is fundamentally

an internal data structure; it cannot provide insight for the relationship between sorting

and priority queue in external memory.

In Chapter 4 we show that priority queues are almost computationally equivalent

to sorting in the I/O model. More precisely, we design an external priority queue that

uses the sorting algorithm as a black box, such that the update cost of the priority

queue is essentially the same as the per key I/O cost of the sorting algorithm. Let

log() denote the nested logarithmic function, i.e., log(0) x = x and log(i) = log(log(i−1) x).

Given a sorting algorithm that sorts N keys in N ·S(N)/B I/Os, our priority queue uses

linear space, and supports a sequence of N insertion, deletion and findmin operations in

O(1
B

∑
i>0 S(B log(i) N

B
)) amortized I/Os per operation. The reduction uses O(B) memory.

The tightness of this reduction can be justified in two aspects. First, if the main memory

has size Ω(B log(c) N
B

) for any constant c, our priority queue supports all operations with

O(S(N)/B) amortized I/Os. Second, if the main memory only has size Θ(B), our priority

queue supports all operations with O(S(N)/B) amortized I/O cost for S(N) = Ω(2log∗ N
B),

and O(S(N) log∗ N
B
/B) amortized I/O cost for S(N) = o(2log∗ N

B). Note that 2log∗ N
B =

o(log(i) N
B

) for any constant i, so it is very unlikely that a sorting algorithm could achieve

S(N) = o(2log∗ N
B), meaning that our reduction is essentially tight even with Θ(B) main

memory.

9

1.4 Summary Queries

Range searching is a natural generalization of the dictionary problem. Here, instead of a

single key, a query specifies a range [q1, q2], and is interested in all keys in the data set that

fall into this range. Range queries can be broadly classified into two categories: reporting

queries and aggregation queries. The former enumerate all the records from the data

set that fall inside the query range, while the latter only produce an aggregate, such as

count, sum, average or max (min), of a particular attribute of these records. Many modern

business intelligence applications, however, require ad hoc analytical queries with a rapid

execution time. Users issuing these analytical queries are interested not in the actual

records, but some statistics of them. This has therefore led to extensive research on how

to perform aggregation queries efficiently. By constructing a data structure beforehand,

aggregation queries can be answered efficiently at query time without going through the

actual data records.

However, reporting and aggregation queries provide only two extremes for analyzing

the data, by returning either all the records matching the query condition or one (or a

few) single-valued aggregates. These simple aggregates are not expressive enough, and

data analysts often need more insight into the data distribution. Consider the following

queries:

(Q1) In a company’s database: What is the distribution of salaries of all employees aged

between 30 and 40?

(Q2) In a search engine’s query logs: What are the most frequently queried keywords

between May 1 and July 1, 2010?

The analyst issuing the query is perhaps not interested in listing all the records in the

query range one by one, while probably not happy with a simple aggregate such as average

or max, either. What would be nice is some summary on the data, which is more complex

than the simple aggregates, yet still much smaller than the raw query results. Some

useful summaries include the frequent items, the φ-quantiles for, say, φ = 0.1, 0.2, . . . , 0.9,

a sketch (e.g., the Count-Min sketch [22] or the AMS sketch [6]), or some compressed data

representations like wavelets. All these summaries are of central importance in massive

data analysis, and have been extensively studied for offline and streaming data. Yet,

to use the existing algorithms, one still has to first issue a reporting query to retrieve

all query results, and then construct the desired summary afterward. This is clearly

time-consuming and wasteful.

In Chapter 5, we study the problem of summary queries , namely, how to build a

data structure so that a summary can be returned in time proportional to the size of the

summary itself, not the size of the raw query results. The problem we consider can be

10

defined more precisely as follows. Let D be a data set containing N records. Each record

p ∈ D is associated with a query attribute Aq(p) and a summary attribute As(p), drawing

values possibly from different domains. A summary query specifies a range constraint

[q1, q2] on Aq and the data structure returns a summary on the As attribute of all records

whose Aq attribute is within the range. For example, in the query (Q1) above, Aq is

“age” and As is “salary”. Note that As and Aq could be the same attribute, but it is

more useful when they are different, as the analyst is exploring the relationship between

two attributes. Our goal is to build a data structure on D so that a summary query can

be answered efficiently. As with any data structure problem, the primary measures are

the query time and the space the structure uses.

Our results can be summarized as follow. For AMS sketch and wavelets, we build a

baseline data structure that has linear size and answers a summary query in O(sε logN)

time, where sε is the size of the summary returned. It also works in external memory, with

the query cost being O(sε
B

logN) I/Os if sε > B and O (logN/ log(B/sε)) I/Os if sε < B.

For quantiles, heavy hitters and the Count-Min sketch, we propose a more delicate data

structure that uses linear space and supports summary queries in O(logN + sε) time. In

external memory, the query cost is O(logB N+sε/B) I/Os. This resembles the classical B-

tree query cost, which includes an O(logB N) search cost and an “output” cost of O(sε/B),

whereas the output in our case is a summary of size sε. This is clearly optimal (in the

comparison model). For not-too-large summaries sε = O(B), the query cost becomes just

O(logB N), the same as that for a simple aggregation query or a lookup on a B-tree.

11

Chapter 2

Dynamic External Hashing

2.1 Introduction

This chapter deals with the inherent query-insertion tradeoff of external hash tables in

the presence of a memory buffer. For proving our lower bounds we make the only re-

quirement that keys must be treated as atomic elements, i.e., they can only be moved

or copied between memory and disk in their entirety, and when answering a query, the

query algorithm must visit the block (in memory or on disk) that actually contains the

key or one of its copies. Such an indivisibility assumption is made in most external mem-

ory lower bounds, such as sorting, permuting [4], and all the range searching problems

[12, 43, 75]. We assume that each machine word consists of logU bits and each key oc-

cupies one machine word (it does not affect our results if an key occupies any constant

number of words). A block has B words and the memory stores up to M words. Finally,

we comment that our lower bounds do not depend on the size of the hash table, which

implies that the hash table cannot do better by consuming more disk space.

Our Results Consider any dynamic hash table that supports insertions in expected

amortized tu I/Os and answers a successful query in expected tq I/Os on average. We

show that if tq 6 1 + O(1/Bc) for any constant c > 1, then we must have tu > 1 −
O(1/B

c−1
6). This is only an additive term of 1/BΩ(1) away from how the standard hash

table is supporting insertions, which means that buffering is essentially useless in this case.

However, if the query cost is relaxed to tq 6 1 + O(1/Bc) for any constant 0 < c < 1,

we present a simple dynamic hash table that supports insertions in tu = O(Bc−1) = o(1)

I/Os (for block sizes B = Ω(log1/c N
M

)). For this case we also present a matching lower

bound of tu = Ω(Bc−1). Finally for the case tq = 1 + Θ(1/B), we show a tight bound of

tu = Θ(1). Our results are pictorially illustrated in Figure 2.1, from which we see that

we now have an almost complete understanding of the entire query-insertion tradeoff,

and tq = 1 + Θ(1/B) seems to be the sharp boundary separating effective and ineffective

buffering. We prove our lower bounds for the three cases above using a unified framework

in Section 2.2 and 2.3. The upper bound for the first case is simply the standard hash

table following [47]; we give the upper bounds for the other two cases in Section 2.4.

12

1 + 1/2Ω(B)

1−O(1/B(c−1)/4)

Ω(Bc−1)

O(Bc−1)

Ω(1)
O(1)

Insertion

Query

1 + Θ(1/B)

1 + Θ(1/Bc), c > 1 1 + Θ(1/Bc), c < 11

upper bounds

lower bounds

Figure 2.1: The query-insertion tradeoff.

Related results Hash tables are widely used in practice due to their simplicity and

excellent performance. Knuth’s analysis [47] applies to the basic version where the hash

table uses an ideal random hash function and tq is the expected average cost. Afterward,

a lot of works have been done to give better theoretical guarantees, for instance removing

the ideal hash function assumption [21], making tq worst-case [24, 29, 60], etc. Lower

bounds have been sparse because in internal memory, the update time cannot be lower

than Ω(1), which is already achieved by the standard hash table. Only with some strong

requirements, e.g., when the algorithm is deterministic and tq is worst-case, can one obtain

some nontrivial lower bounds on the update time [24]. Our lower bounds, on the other

hand, hold for randomized algorithms and do not need tq to be worst-case.

As commented earlier, in external memory there is a trivial lower bound of 1 I/O

for either a query or an update, if all the changes to the hash table must be committed

to disk after each update. However, the vast amount of works in the area of external

memory algorithms have never made such a requirement. And indeed for many problems,

the availability of a small internal memory buffer can significantly reduce the amortized

update cost without affecting the query cost [9, 10, 25, 70]. Unfortunately, little is known

13

on the inherent limit of what buffering can do. The only nontrivial lower bounds on the

update cost of any external data structure with a memory buffer are a paper by Fagerberg

and Brodal [17] on the predecessor problem and a recent result of Yi [75] on the range

reporting problem. But the techniques used are inapplicable to our problem. Our result

is the first nontrivial lower bound on external hashing. More recently, Verbin and Zhang

proved [68] that if tq is o(logB logN N) for both successful and unsuccessful queries, then

the amortized update cost has to be at least 0.99 I/Os. This completely confirms Jensen

and Pagh’s conjecture.

2.2 Lower Bounds

In this section, we prove a lower bound for any deterministic hash table under a total of

N independent and random insertions, for some sufficiently large N . In Section 2.3 we

will extend this lower bound to randomized hash table. We will derive a lower bound

on tu, the expected amortized number of I/Os for an insertion, while assuming that the

hash table is able to answer a successful query in tq I/Os on average in expectation after

the first i keys have been inserted, for all i = 1, . . . , N . We assume that all the keys are

different, which happens with probability 1−O(1/N) as long as U > N3 by the birthday

paradox. Under this setting we obtain the following tradeoffs between tq and tu.

Theorem 2.1 For any constant c > 0, suppose we insert a sequence of N > Ω (M logU ·B2c)

random keys into an initially empty hash table. If the total cost of these insertions is ex-

pected N · tu I/Os, and the hash table is able to answer a successful query in expected

average tq I/Os at any time, then the following tradeoffs hold:

1. If tq 6 1 +O(1/Bc) for any c > 1, then tu > 1−O(1/B
c−1
4);

2. If tq 6 1 +O(1/B), then tu > Ω(1);

3. If tq 6 1 +O(1/Bc) for any 0 < c < 1, then tu > Ω(Bc−1).

The abstraction To abstractly model a dynamic hash table, we ignore any of its aux-

iliary structures but only focus on the layout of keys. Consider any snapshot of the hash

table when we have inserted k keys. We divide these k keys into three zones. The memory

zone M is a set of at most M keys that are kept in memory. It takes no I/O to query

any key in M. All keys not in M must reside on disk. Denote all the blocks on disk by

B1,B2, . . . ,Bd. Each Bi is a set of at most B keys, and it is possible that one key appears

in more than one Bi. Let f : U → {1, . . . , d} be any function computable within memory,

and we divide the disk-resident keys into two zones with respect to f and the set of blocks

14

B1, . . . ,Bd. The fast zone F contains all keys x such that x ∈ Bf(x): These are the keys

that are accessible with just one I/O. We allocate all the remaining keys into the overflow

zone O: These keys need at least two I/Os to locate. Note that under random inputs, the

setsM,F ,O,B1, . . . ,Bd are all random sets, which the hash table will adaptively choose

after seeing each random insertion. Changing M is free, but changing any Bi will cost 1

I/O.

Any query algorithm on the hash table can be modeled as described, since the only

way to find a queried key in one I/O is to compute the index of a block containing x with

only the information in memory. If the memory-resident computation gives an incorrect

address or anything else, at least 2 I/Os will be necessary. Because any such f must

be computable within memory, and the memory has M logU bits, the hash table can

employ a family H of at most 2M logU distinct f ’s. Note that the current f adopted by

the hash table is dependent upon the already inserted keys, but the family H has to be

fixed beforehand.

Suppose the hash table answers a successful query with an expected average cost of

tq = 1 + δ I/Os, where δ = 1/Bc for some constant c > 0. Consider the snapshot of the

hash table when k keys have been inserted. Then we must have E[|F|+ 2 · |O|]/k 6 1 + δ.

Since |F|+ |O| = k − |M| and E[|M|] 6M , we have

E[|O|] 6M + δk. (2.1)

We also have the following high-probability version of (5.1).

Lemma 2.2 Let φ > 1/B(c−1)/4 and let k > φN . At the snapshot when k keys have been

inserted, with probability at least 1− 2φ, |O| 6M + δ
φ
k.

Proof : On this snapshot the hash table answers a query in expected average 1 + δ I/Os.

We claim that with probability at most 2φ, the average query cost is more than 1 + δ/φ.

Otherwise, since in any case the average query cost is at least 1−M/k (assuming all keys

not in memory need just one I/O), we would have an expected average cost of at least

(1− 2φ)(1−M/k) + 2φ · (1 + δ/φ) > 1 + δ,

provided that N
M
> 1

φδ
, which is valid since we assume that N

M
> B2c logU . The lemma

then follows from the same argument used to derive (5.1). ut

Basic idea of the lower bound proof For the first φN keys, we ignore the cost of

their insertions. Consider any f : U → {1, . . . , d}. For i = 1, . . . , d, let αi = |f−1(i)|/U ,

and we call (α1, . . . , αd) the characteristic vector of f . Note that
∑

i αi = 1. For any

one of the first φN keys, since it is randomly chosen from U , f will direct it to Bi with

15

probability αi. Intuitively, if αi is large, too many keys will be directed to Bi. Since Bi
contains at most B keys, the extra keys will have to be pushed to the overflow zone. If

there are too many large αi’s, O will be large enough to violate the query requirement.

Thus, the hash table should use an f that distributes keys relatively evenly to the blocks.

However, if f evenly distributes the first φN keys, it is also likely to distribute newly

inserted keys evenly, leading to a high insertion cost. Below we formalize this intuition.

For the first tradeoff of Theorem 2.1, we set δ = 1/Bc. We also pick the following set of

parameters φ = 1/B(c−1)/4, ρ = 2B(c+3)/4/N, s = N/B(c+1)/2. We will use different values

for these parameters when proving the other two tradeoffs. Given an f with characteristic

vector (α1, . . . , αd), let Df = {i | αi > ρ} be the collection of block indices with large αi’s.

We say that the indices in Df form the bad index area and others form the good index

area. Let λf =
∑

i∈Df αi. Note that there are at most λf/ρ indices in the bad index area.

We call an f with λf > φ a bad function; otherwise it is a good function. The following

lemma shows that with high probability, the hash table has to use a good function f from

H.

Lemma 2.3 At the snapshot when k keys are inserted for any k > φN , the function f

used by the hash table is a good function with probability at least 1− 2φ− 1/2Ω(B).

Proof : Consider any bad function f from H. Let Xj be the indicator variable of the

event that the j-th inserted key is mapped to the bad index area, j = 1, . . . , k. Then

X =
∑k

j=1 Xj is the total number of keys mapped to the bad index area of f . We have

E[X] = λfk. By the Chernoff bound, we have

Pr

[
X <

2

3
λfk

]
6 e−

(1/3)2λfk

2 6 e−
φ2N
18 ,

namely with probability at least 1 − e−
φ2N
18 , we have X > 2

3
λfk. Since the family H

contains at most 2M logU bad functions, by a union bound we know that with probability

at least 1− 2M logU · e−φ
2N
18 > 1− 1/2Ω(B) (by the parameters chosen and the assumption

that N > Ω(MB2c logU)), for all the bad functions in H, we have X > 2
3
λfk.

Consequently, since the bad index area can only accommodate B · λf/ρ keys in the

fast zone, at least 2
3
λfk−Bλf/ρ cannot be in the fast zone. The memory zone can accept

at most M keys, so the number of keys in the overflow zone is at least

|O| > 2

3
λfk −Bλf/ρ−M > M +

δ

φ
k.

This happens with probability at least 1−1/2Ω(B), due to the fact that f is a bad function.

On the other hand, Lemma 2.2 states that |O| 6M + δ
φ
k holds with probability at least

1− 2φ, thus by a union bound the hash table has to use a good function with probability

at least 1− 2φ− 1/2Ω(B). ut

16

A bin-ball game Lemma 2.3 enables us to consider only those good functions f after

the initial φN insertions. To show that any good function will incur a large insertion cost,

we first consider the following bin-ball game, which captures the essence of performing

insertions using a good function.

In an (s, p, t) bin-ball game, we throw s balls into r (for any r > 1/p) bins independently

at random, and the probability that any ball goes to any particular bin is no more than

p. At the end of the game, an adversary removes t balls from the bins such that the

remaining s− t balls hit the least number of bins. The cost of the game is defined as the

number of nonempty bins occupied by the s− t remaining balls.

We have the following two results with respect to such a game, depending on the

relationships among s, p, and t.

Lemma 2.4 If sp 6 1
3
, then for any µ > 0, with probability at least 1− e−µ

2s
3 , the cost of

an (s, p, t) bin-ball game is at least (1− µ)(1− sp)s− t.

Proof : Imagine that we throw the s balls one by one. Let Xj be the indicator variable de-

noting the event that the j-th ball is thrown into an empty bin. The number of nonempty

bins in the end is thus X =
∑s

j=1Xj. These Xj’s are not independent, but no matter

what has happened previously for the first j − 1 balls, we always have Pr[Xj = 0] 6 sp.

This is because at any time, at most s bins are nonempty. Let Yj (1 6 j 6 s) be a set of

independent variables such that

Yi =

{
0, with probability sp;

1, otherwise.

Let Y =
∑s

j=1 Yj. Each Yi is stochastically dominated by Xi, so Y is stochastically

dominated by X. We have E[Y] = (1− sp)s and we can apply the Chernoff bound on Y :

Pr [Y < (1− µ)(1− sp)s] < e−
µ2(1−sp)s

2 < e−
µ2s
3 .

Therefore with probability at least 1−e−µ
2s
3 , we have X > (1−µ)(1−sp)s. Finally, since

removing t balls will reduce the number of nonempty bins by at most t, the cost of the

bin-ball game is at least (1− µ)(1− sp)s− t with probability at least 1− e−µ
2s
3 . ut

Lemma 2.5 If s/2 > t and s/2 > 1/p, then with probability at least 1− 1/2Ω(s), the cost

of an (s, p, t) bin-ball game is at least 1/(20p).

Proof : In this case, the adversary will remove at most s/2 balls in the end. Thus we

show that with very small probability, there exist a subset of s/2 balls all of which are

thrown into a subset of at most 1/(20p) bins. Before the analysis, we merge bins such

17

that the probability that any ball goes to any particular bin is between p/2 and p, and

consequently, the number of of bins would be between 1/p to 2/p. Note that such an

operation will only make the cost of the bin-ball game smaller. Now this probability is at

most

1/(20p)∑
i=1

((
2/p

i

)(
s

s/2

)(
i

1/p

)s/2)
6 2

(
2/p

1/(20p)

)(
s

s/2

)(
1/(20p)

1/p

)s/2
6 1/2Ω(s),

hence the lemma. ut

Now we are ready to prove the main theorem.

Proof of Theorem 2.1 Proof : We begin with the first tradeoff. Recall that we use

the following parameters: δ = 1/Bc, φ = 1/B(c−1)/4, ρ = 2B(c+3)/4/N , s = N/B(c+1)/2.

For the first φN keys, we do not count their insertion costs. We divide the rest of the

insertions into rounds, with each round containing s keys. We now bound the expected

cost of each round.

Focus on a particular round, and let f be the function used by the hash table at the

end of this round. We only consider the set R of keys inserted in this round that are

mapped to the good index area of f , i.e., R = {x | f(x) 6∈ Df}; other keys are assumed

to have been inserted for free. Consider the block with index f(x) for a particular x. If x

is in the fast zone, the block Bf(x) must contain x. Thus, the number of distinct indices

f(x) for x ∈ R ∩ F is an obvious lower bound on the I/O cost of this round. Denote

this number by Z = |{f(x) | x ∈ R ∩ F}|. Below we will show that Z is large with high

probability.

We first argue that at the end of this round, each of the following three events happens

with high probability.

- E1: |O| 6 δN/φ+M ;

- E2: f is a good function;

- E3: For all good functions f ∈ H and their corresponding overflow zones O and

memory zones M, Z > (1−O(φ))s− t, where t = |O|+ |M|.

By Lemma 2.2, E1 happens with probability at least 1−2φ. By Lemma 2.3, E2 happens

with probability at least 1− 2φ− 1/2Ω(B). It remains to show that E3 also happens with

high probability.

We prove so by first claiming that for a particular good function f ∈ H, with proba-

bility at least 1− e−2φ2s, Z is at least the cost of a ((1− 2φ)s, ρ
1−λf , t) bin-ball game. This

is because of the following reasons:

18

1. Since f is a good function, by the Chernoff bound, with probability at least 1−e−2φ2s,

more than (1− 2φ)s newly inserted keys will fall into the good index area of f , i.e.,

|R| > (1− 2φ)s.

2. The probability of any key being mapped to any index in the good index area,

conditioned on that it goes to the good index area, is no more than ρ
1−λf .

3. Only t keys in R are not in the fast zone F , excluding them from R corresponds to

discarding t balls at the end of the bin-ball game.

Thus by Lemma 2.4 (setting µ = φ), with probability at least 1− e−φ
2·(1−2φ)s

3 − e−2φ2s,

we have

Z > (1− φ)

(
1− (1− 2φ)s · ρ

1− λf

)
(1− 2φ)s− t

> (1− φ)

(
1− (1− 2φ)s · ρ

1− φ

)
(1− 2φ)s− t

> (1−O (φ)) s− t.

Thus by applying a union bound on all good functions in H, E3 happens with prob-

ability at least 1 − (e−
φ2·(1−2φ)s

3 + e−2φ2s) · 2M logU = 1 − 2−Ω(B) (by the assumption

N > Ω(MB2c logU)).

Now we lower bound the expected insertion cost of one round. By a union bound,

with probability at least 1 − O(φ) − 1/2Ω(B), all of E1, E2, and E3 happen at the end of

the round. By E2 and E3, we have Z > (1−O (φ)) s − t. Since now t = |O| + |M| 6
δN/φ + 2M = O (φs) by E1, we have Z > (1−O (φ)) s. Thus the expected cost of one

round will be at least

(1−O (φ)) s ·
(
1−O(φ)− 1/2Ω(B)

)
= (1−O (φ)) s.

Finally, since there are (1− φ)N/s rounds, the expected amortized cost per insertion

is at least

(1−O(φ)) s · (1− φ)N/s · 1/N = 1−O
(

1/B
c−1
4

)
.

For the second tradeoff, we choose the following set of parameters: φ = 1/κ, ρ =

2κB/N, s = N/(κ2B) and δ = 1/(κ4B) (for some constant κ large enough). We can check

that Lemma 2.3 still holds with these parameters, and then go through the proof above.

We omit the tedious details. Plugging the new parameters into the derivations we obtain

a lower bound tu > Ω(1).

For the third tradeoff, we choose the following set of parameters: φ = 1/8, ρ =

16B/N, s = 32N/Bc and δ = 1/Bc. We can still check the validity of Lemma 2.3,

and go through the whole proof. The only difference is that we need to use Lemma 2.5

19

in place of Lemma 2.4, the reason being that for our new set of parameters, we have

sρ = ω(1) thus Lemma 2.4 does not apply. By using Lemma 2.5 we can lower bound the

expected insertion cost of each round by Ω ((1− 2φ)/(20ρ)), so the expected amortized

insertion cost is at least

Ω

(
1− 2φ

20ρ

)
· (1− φ)N/s · 1/N = Ω(Bc−1),

as claimed. ut

2.3 Lower Bounds for Randomized Hash Tables

In this section we show how to extend our lower bound to randomized hash tables. We

follow the framework of Yao [74]. A randomized hash table can be viewed as a proba-

bility distribution PA over the set A of all deterministic hash tables. We still consider

the tradeoff between the expected average cost of a successful query tq and the expected

amortized insertion cost tu. Now the expectation is with respect to the probability dis-

tribution PA. More precisely, let Q(A, I, t) denote the average query cost over all keys

in the deterministic hash table A ∈ A, on input sequence I at snapshot t, and U(A, I)

denote the I/O cost per key of inserting all keys in I using A, then the expected average

query cost and expected amortized insertion cost of a randomized hash table PA can be

expressed as tq = max
I

max
t

EPA [Q(A, I, t)] and tu = max
I

EPA [U(A, I)], respectively. For

randomized hash tables we have the following tradeoffs:

Theorem 2.6 For any randomized hash table, suppose we insert a sequence of N >

Ω (M logU ·B2c) keys into it. If the total cost of these insertions is expected at most

N · tu I/Os under any input, and the hash table is able to answer a successful query in

expected average tq I/Os at any time, then the following tradeoffs hold:

1. If tq 6 1 +O(1/Bc) for any c > 1, then tu > 1−O(1/B
c−1
6);

2. If tq 6 1 +O(1/B), then tu > Ω(1);

3. If tq 6 1 +O(1/Bc) for any 0 < c < 1, then tu > Ω(Bc−1).

Proof : For the first tradeoff, we set the parameters as follows: φ = 1/B(c−1)/6, ρ =

2B(c+5)/6, s = N/B(c+2)/3. Assuming the query cost

max
I

max
t

EPA [Q(A, I, t)] 6 1 +O(1/Bc)

for any c > 1, we will derive a lower bound for the insertion cost max
I

EPA [Q(A, I)]. Let

PI denote the uniform distribution over the set I of all input sequences of length N .

20

Considering 1
N

∑N
t=1 EPI ,PA [Q(A, I, t)], we have the following bound:

1

N

N∑
t=1

EPI ,PA [Q(A, I, t)] =
1

N

N∑
t=1

EPI [EPA [Q(A, I, t)]]

6
1

N

N∑
t=1

EPI [1 +O(1/Bc)]

6 1 +O(1/Bc).

Consider any t > φN . Since Q(A, I, t) > 1 −M/φN for all A and I, it follows that

with probability at least 1− φ, the (deterministic) hash table A chosen according to PA

satisfies
1

N

N∑
t=1

EPI [Q(A, I, t)] 6 1 +O

(
1

φBc

)
,

by the parameters chosen above and for N large enough. We will prove that for these

hash tables, the insertion cost is large. Fixing such a hash table A, it is easy to show that

A satisfies EPI [Q(A, I, t)] 6 1 + O
(

1
φ2Bc

)
on at least (1 − 2φ)N snapshots. Call these

snapshots good snapshots. We can check that Lemma 2.2 and Lemma 2.3 still hold on

any good snapshot. Ignoring the first φN insertions, we divide the remaining (1 − φ)N

insertions into rounds, with each round containing exactly s good snapshots and also

ending with a good one. Focusing on a particular round, we only consider the insertion

cost of the s keys inserted right before the good snapshots. Since the ending snapshot

of the round is good, using the same argument as in Theorem 2.1 we can prove that the

cost inserting the s keys is at least (1−O(φ))s. So the total insertion cost of each round

is at least (1−O(φ))s. Since there are (1− 2φ)N/s rounds, the expected amortized cost

per insertion of A is EPI [U(A, I)] > (1−O(φ))s · (1− 2φ)N/s · 1/N = 1−O(φ). For the

randomized hash table PA, since with probability > 1− φ, A is one for which the above

analysis goes through, we can bound the expected amortized insertion cost as follows:

max
I

EPA [U(A, I)] > EPA,PI [U(A, I)]

> (1− φ)(1−O(φ))

> 1−O(1/B
c−1
6).

For the second and third tradeoffs, we choose the same parameters as in the proof of

Theorem 2.1, and a similar argument will yield the desired results. ut

2.4 Upper Bounds

In this section, we present some upper bounds on the query-insertion tradeoff of external

hash tables, showing that all three lower bound tradeoffs of Theorem 2.1 are essentially

21

tight. The first tradeoff is matched by the standard external hash table, up to an additive

term of 1/BΩ(1). Below we give matching (up to constant factors) upper bounds for the

other two tradeoffs.

Specifically, we present a simple dynamic hash table that, for any constant 0 < c 6 1,

supports insertions in tu = O(Bc−1 + log(N/M)
B

) I/Os amortized, while being able to answer

a query in expected tq = 1 +O(1/Bc) I/Os on average. This means that our lower bound

is tight for all block sizes B = Ω(log1/c N
M

). In the following we first state a folklore result

by applying the logarithmic method [15] to a standard hash table [47], then we show how

to improve the query cost to 1 +O(1/Bc) while keeping the insertion cost low.

Applying the logarithmic method Fix a parameter γ > 2. We maintain a series of

hash tables H0, H1, The hash table Hk has γk · M
B

buckets and stores up to 1
2
γkM

keys, so that its load factor is always at most 1
2
. We use some standard method to resolve

collisions, such as chaining. The first hash table H0 always resides in memory while the

rest stay on disk.

When a new key is inserted, it always goes to the memory-resident H0. When H0 is

full (i.e., having 1
2
M keys), we migrate all keys stored in H0 to H1. If H1 is not empty, we

simply merge the corresponding buckets. Note that each bucket in H0 corresponds to γ

consecutive buckets in H1, and we can easily distribute the keys to their new buckets in H1

by scanning the two tables in parallel, costing O(γ · M
B

) I/Os. This operation takes place

inductively: Whenever Hk is full, we migrate its keys to Hk+1, costing O(γk+1 · M
B

) I/Os.

Then standard analysis shows that for N insertions, the total cost is O(γN
B

log N
M

) I/Os,

or O(γ
B

log N
M

) amortized I/Os per insertion. However, for a query we need to examine all

the O(logγ
N
M

) hash tables.

Lemma 2.7 For any parameter γ > 2, there is a dynamic hash table that supports an

insertion in amortized O(γ
B

log N
M

) I/Os and a successful query in expected O(logγ
N
M

)

I/Os.

Improving the query cost Next we show how to improve the average cost of a suc-

cessful query to 1 +O(1/Bc) I/Os for any constant 0 < c 6 1, while keeping the insertion

cost low. The idea is to try to put the majority of the keys into one single big hash table.

In the standard logarithmic method described above, the last table may seem a good

candidate, but sometimes it may only contain a constant fraction of all keys. Below we

show how to bootstrap the structure above to obtain a better query bound.

Fix a parameter 2 6 β 6 B. For the first M keys inserted, we dump them in a hash

table Ĥ on disk. Then run the algorithm of Lemma 2.7 for the next M/β keys. After that

we merge these M/β keys into Ĥ. We keep doing so until the size of Ĥ has reached 2M ,

22

and then we start the next round. Generally, in the i-th round, the size of Ĥ goes from

2i−1M to 2iM , and we apply the algorithm of Lemma 2.7 for every 2i−1M/β keys. It is

clear that Ĥ always has at least a fraction of 1 − 1
β

of all the keys inserted so far, while

the series of hash tables used in the logarithmic method maintain at least a separation

factor of 2 in the sizes between successive tables. Thus, the expected average query cost

is at most(
1 + 1/2Ω(B)

)(
1 ·
(

1− 1

β

)
+

1

β

(
2 · 1

2
+ 3 · 1

4
+ · · ·

))
= 1 +O(1/β)).

Next we analyze the amortized insertion cost. Since the number of keys doubles every

round, it is (asymptotically) sufficient to analyze the last round. In the last round, Ĥ is

scanned β times, and we charge O(β/B) I/Os to each of the N keys. The algorithm of

Lemma 2.7 is invoked β times, but every invocation handles O(N/β) different keys, so

the amortized cost per key is still O(γ
B

log N
M

) I/Os. Thus the total amortized cost per

insertion is O(1
B

(β + γ log N
M

)) I/Os. Then setting β = Bc and γ = 2 yields the desired

results.

Theorem 2.8 For any constant 0 < c 6 1, there is a dynamic hash table that supports an

insertion in amortized O(Bc−1 + log(N/M)
B

) I/Os and a successful query in expected average

1 +O(1/Bc) I/Os.

23

Chapter 3

Cache-Oblivious Hashing

3.1 Introduction

In this chapter we study hash tables in the cache-oblivious model. Recall that in the

cache-oblivious model, the hash table is unaware of the block size B, so the hash function

can not be used to index blocks. Our goal is to lay out a hash table such that its search

cost matches its cache-aware version, i.e., 1 + 1/2Ω(B) I/Os, for all block sizes B.

Our results A straightforward way of making the hash table cache-oblivious is to simply

use linear probing but ignoring the blocking altogether1. One would expect it to work well

irrespective of the block size since it uses only sequential probes. However, in Section 3.2

we show that its search cost is 1 + O(α/B) I/Os even assuming a truly random hash

function. In fact, we also derive the constant in the big-Oh, which depends on CN and

C ′N , the expected average number of probes for a successful and unsuccessful lookup,

respectively. Recall that Under such truly random hash function assumption, Knuth [47]

showed that

CN ≈ 1
2

(
1 + 1

1−α
)

(successful lookup);

C ′N ≈ 1
2

(
1 +

(
1

1−α
)2
)

(unsuccessful lookup).

This is worse than its cache-aware version that is particularly tuned to work with a

single B. The gap is in some sense exponential, if we are concerned with the fraction of

keys that cannot be found with a single I/O (note that an average search cost of tq = 1+ε

means that at most a fraction of ε keys need two or more I/Os).

Next, we explore other collision resolution strategies to see if they work better in the

cache-oblivious model. In Section 3.3, we show that the blocked probing algorithm [59]

achieves the desired 1 + 1/2Ω(B) search cost, but under the following two conditions: (a)

B is a power of 2; and (b) every block starts at a memory address divisible by B. In

addition, we have analyzed the performance of blocked probing when the hash function

has limited independence: We show that with a k-wise independent hash function, the

expected I/O cost of a search is 1 +O

((
k−1

e2/3(1−α)2B

)(k−1)/2
)

. Since a k-wise independent

1Chaining would perform worse cache-obliviously because the list associated with each position is not

laid out consecutively.

24

hash function is also k′-wise independent for all k′ 6 k, as long as k > (1 − α)2B + 1,

the bound becomes 1 + 2−Ω((1−α)2B) = 1 + 2−Ω(B), matching that of a truly random hash

function.

Note that neither of the two conditions above is stated in the cache-oblivious model,

but they indeed hold on all real machines. This raises the theoretical question of whether

1 + 1/2Ω(B) is achievable in the “true” cache-oblivious model. In Section 3.4, we show

that neither condition is dispensable. Specifically, we prove that if the hash table is

only required to work for a single B but an arbitrary shift of the layout, or if (B) holds

but the hash table is required to work for all B, then the best obtainable search cost is

1 +O(α/B) I/Os, which exactly matches what linear probing achieves. Our lower bound

model allows a truly random hash function to be used and puts no restrictions on the

structure of the hash table, except that each key is treated as an atomic element, known

as the indivisibility assumption.

Related results Hashing has been well studied in the I/O model. The 1 + 1/2Ω(B)

search cost holds as long as the load factor α is bounded away from 1 [47], and there are

various techniques in the database literature to keep the load factor in a desired range,

such as extensible hashing or linear hashing, as previously mentioned.

The cache-oblivious model was proposed by Frigo et al., which introduces a clean and

elegant way to modeling memory hierarchies. Since then, cache-oblivious algorithms and

data structures have received a lot of attention, and most fundamental problems have

been solved. For example, cache-oblivious sorting takes O(N
B

logM/B
N
B

) I/Os [30], and

a cache-oblivious B-tree takes O(logB N) I/Os for a search [13]. Please see the survey

[23] for other results. In most cases, the cache-oblivious bounds match their cache-aware

versions, and it has always be an interesting problem to see for what problems do we have

a separation between the cache-oblivious model and the cache-aware model. Until today

there have been only three separation results [2, 14, 19]; our lower bound adds to that list,

furthering our understanding of cache-obliviousness.

3.2 Analysis of Linear Probing in the Cache-Oblivious

Model

Linear probing while ignoring the blocking is naturally cache-oblivious. In this section

we analyze its search I/O cost, which turns out to delicately depend on CN and C ′N ,

the expected number of probes in a successful and unsuccessful query, respectively. Note

that the equalities in the theorem below are exact, though we only know the asymptotic

formulas for CN and C ′N .

25

Theorem 3.1 Suppose the linear probing algorithm uses a truly random hash function

h. Let CON and CO′N denote the expected average number of I/Os for a successful and

an unsuccessful query, respectively. For any block size B, we have

CON = 1 + (CN − 1)/B;

CO′N = 1 + (C ′N − 1)/B.

Proof : LetR be the size of the hash table, which is divided intoR/B blocks B0, . . . ,BR/B−1

(assuming that R is a multiple of B for simplicity). The block Bl spans positions

lB, lB + 1, . . . , lB + B − 1. Consider an unsuccessful search for a key x. Define p(i, j),

i 6= j, to be the event that the hash table has positions i through j occupied (wrapping

around when necessary). Note that the number of occupied positions is N , so p(i, j) = 0

for any j /∈ {i, i + 1, . . . , i + N − 1} (wrapping around when necessary). By the circular

symmetry of linear probing and the uniform hash function assumption, p(0, k) is exactly

the probability that an unsuccessful search for a key x takes at least k + 2 probes. Thus

we have

C ′N = 1 +
N−1∑
k=0

p(0, k). (3.1)

Let pk be the probability that an unsuccessful search takes at least k+ 1 I/Os. Below

we will relate pk with the p(0, k)’s. By the uniformity of the hash function h, we assume

that h(x) lies in the first block. Note that for a insertion to cost at least k + 1 I/Os,

positions h(x) through kB−1 must be occupied. Since h(x) hits position 0 through B−1

with same probability, we have

pk =
1

B

B−1∑
i=0

p(i, kB − 1)

=
1

B

B−1∑
i=0

p(0, kB − i− 1) (Since h is a truly random function.).

26

Now we can compute CO′N as follows:

CO′N = 1 +

N/B∑
k=1

pk

= 1 +

N/B∑
k=1

1

B

B−1∑
i=0

p(0, kB − i− 1)

= 1 +
1

B

N−1∑
j=0

p(0, j)

= 1− 1

B
+

1

B

(
1 +

N−1∑
j=0

p(0, j)

)

= 1− 1

B
+
C ′N
B
.

For the expected successful query cost CON , we have

CON =
1

N

N−1∑
k=0

CO′k = 1− 1

B
+

∑N−1
k=0 C

′
k

NB
= 1− 1

B
+
CN
B
.

ut

Combing with Knuth’s result that CN ≈ 1
2
(1 + 1

1−α) and C ′N ≈ 1
2
(1 + (1

1−α)2), we

conclude that the I/O cost of directly applying linear probing in the cache-oblivious

model is 1 + Θ(α/B), which is a lot worse than its the external version that is aware of

the blocking.

3.3 Blocked Probing

Standard linear probing maintains the invariant that each key x is placed as close as

possible to position h(x) in the probe sequence. Blocked probing is a variant of linear

probing proposed by Pagh et al. [59], who used it to derive optimal performance (as

a function of α) assuming only 5-wise independent hash functions. In this section, we

demonstrate that blocked probing also achieves the desired 1 + 1/2−Ω(B) I/O bound in

the cache-oblivious model, under the assumptions that the block size B is a power of 2

and the memory blocks are B-aligned.

3.3.1 Algorithm description

Let [R] = {0, 1, . . . R − 1} denote the hash table, where R is a power of two. It is also

assumed that R is fixed, i.e., there is no notion of dynamically adjusting the capacity of the

hash table; at the end of this section we sketch how to handle the general case. Suppose

that the key x is stored in location ix, we define the distance measure d(x, ix) to be the

27

position of the most significant bit in which h(x) and ix differ (the least significant bit is

said to be at position 1), and d(x, ix) = 0 in case ix = h(x). Let I(x, j) = {i | d(x, i) 6 j}.
Note that I(x, j) is the aligned block of size 2j that contains h(x). The invariant of blocked

probing is that each key is stored as close as possible to h(x) in the sense that ix ∈ I(x, j)

if there is sufficient space, i.e., if the number of keys with hash values in I(x, j) is at most

|I(x, j)| = 2j. Below we describe the operations of blocked probing.

When inserting a key x, the invariant is maintained by searching, for j = 0, 1, 2, . . . ,

for a location i ∈ I(x, j) where x could be placed. For each j, we first check if there is an

empty location in I(x, j) and put x there if there is one. Otherwise, we look for a location

ix′ ∈ I(x, j) that contains a key x′ with d(x′, ix′) > j (implying that h(x′) 6∈ I(x, j)). If

there is such an x′, we swap x and x′, and continue the insertion process with x′. If both

attempts fail, we move on to the next j.

A lookup for x proceeds by inspecting, for j = 0, 1, 2, . . . , the locations of I(x, j) until

either x is found, or we do not find x but find instead an empty location or a key x′ with

d(x′, ix′) > j. In the latter cases, the invariant tells us that x is not present in the hash

table.

Deletion of a key x ∈ I(x, j)\I(x, j − 1) needs to check if there is a key stored in

I(x, j + 1)\I(x, j) that could be stored in I(x, j) — if this is the case it is copied to the

empty location, and the old copy is deleted recursively.

3.3.2 Cache-oblivious analysis of blocked probing

We assume the block size B is a power of two, and the i-th block Bi starts at position

iB and ends at position iB +B − 1. Then for any key x, the aligned block I(x, logB) is

the block that contains h(x). Let D denote the set of keys involved in a given operation

(insertion, deletion, successful or unsuccessful search), including the key x specified by the

query or update (x may or may not be in the hash table). To bound the expected I/O cost

for an operation, define event Es(x, j) as the aligned block I(x, j) being saturated, that is,

the number of keys in D with hash value in the aligned block I(x, j) is 2j or more. Let

p(x, j) denote the probability that Es(x, j) happens. The following lemma relates p(x, j)

with Cbp, the expected I/O cost for an operation of blocked probing.

Lemma 3.2 Suppose function h is uniformly drawn from a pairwise independent hash

family H, then

Cbp 6 1 +

logR∑
j=1+logB

2j+2

B
p(x, j).

Proof : We first note that the cost of a search for key x is bounded by that of an insertion

of x, so we only need to consider insertions and deletions. Let Ef (x, j) denote the event

28

that the aligned block I(x, j) is full, that is, the number of keys stored in I(x, j) is 2j.

Let q(x, j) denote the probability that Ef (x, j) happens. Observe that an insertion or a

deletion would visit a location outside I(x, j) only if all positions of I(x, j) are occupied,

so the probability that the operation takes at least 2j/B I/Os is q(x, j), for j > logB. To

compute the expected number of blocks involved in an operation, in addition to the first

I/O that retrieves I(x, logB), we sum over all possible values of j > logB the cost 2j/B

multiplied by the probability that j steps or more are used:

Cbp 6 1 +
∞∑

j=1+logB

2j

B
q(x, j). (3.2)

Next we will relate q(x, j), the probability that I(x, j) is full, with p(x, j), the prob-

ability that I(x, j) is saturated. Divide the hash table R into log(R/2B) + 1 aligned

blocks:

I = {I(x, j), I(x, j + 1)\I(x, j), I(x, j + 2)\I(x, j + 1), . . . , I(x,R)\I(x,R/2)}.

The claim is that if I(x, j) is full, then at least one of the aligned blocks in I is saturated.

For a proof, assume that no aligned block in I is saturated. We inductively prove that

each aligned block in I only stores keys with hash values inside it, which immediately

implies that I(x, j) is non-full, and thus leads to a contradiction. For the first insertion

the statement is true. Now suppose the statement is true after the k-th insertion. When

the (k + 1)-th insertion yk+1 comes, let I(x, l + 1)\I(x, l) denote the aligned block in I
that contains h(yk+1). By the inductive hypothesis, I(x, l + 1)\I(x, l) only contains the

keys with hash values in it, and since I(x, l + 1)\I(x, l) is not saturated we know that

I(x, l + 1)\I(x, l) is non-full. Therefore the key yk+1 is stored in an empty position of

I(x, l + 1)\I(x, l), and the induction follows.

Observe that since the hash function h is drawn from a pairwise independent family,

the probability that the I(x, l+ 1)\I(x, l) is saturated is the same as the probability that

I(x, l) is saturated, that is, p(x, l). By a union bound we have the following inequality:

q(x, j) 6 p(x, j) +

logR∑
l=j

p(x, l). (3.3)

29

Combining (3.2) and (3.3) we have

Cbp 6 1 +

logR∑
j=1+logB

2j

B
q(x, j)

6 1 +

logR∑
j=1+logB

2j

B

(
p(x, j) +

logR∑
l=j

p(x, l)

)

= 1 +

logR∑
j=1+logB

1

B

(
2j +

j∑
l=1+logR

2l

)
p(x, j)

6 1 +

logR∑
j=1+logB

2j+2

B
p(x, j).

ut

For a truly random hash function, p(x, j) can bounded using the Chernoff bound: The

probability that a key is hashed to I(x, j) is 2j/R, so the expected number of keys hashed

to I(x, j) is 2jN/R = α2j. Recall that p(x, j) is the probability that the number of keys

hashed to I(x, j) is 2j or more, by the Chernoff bound, p(x, j) 6 2−(1−α)2 2j−1
. Following

Lemma 3.2, we have

Cbp 6 1 +

logR∑
j=1+logB

2j+2p(x, j)

= 1 +

logR∑
j=1+logB

(2j+2/B)2−(1−α)2 2j−1

6 1 + 2−Ω((1−α)2B).

That h is a truly random hash function is an unrealistic assumption. To analyze

blocked probing with limited independence, we need the following variant of the Chernoff

bound by Schmidt et al. [63]:

Lemma 3.3 ([63]) Let X1, . . . , XN be a sequence of k-wise independent random vari-

ables, that satisfy |Xi−E[Xi]| 6 1. Let X =
∑N

i=1Xi with E[X] = µ, and let δ2[X] denote

the variance of X, so that δ2[X] =
∑N

i=1 δ
2[Xi] (this equation holds provided k > 2). Then

for any even k and C > max{k, δ2[X]},

Pr[|X − µ| > T] 6

(
kC

e2/3T 2

)k/2
.

Lemma 3.2 and 3.3 together will lead to the following result:

Theorem 3.4 Consider a blocked probing hash table in the cache-oblivious model where

the block size B is power of 2 and every block starts at a memory address divisible by B.

30

Suppose the hash table has a fixed size R and the hash function h is chosen uniformly

at random from a k-wise independent hash family for odd k > 5. For any sequence of

operations (insertions, deletions, and lookups), let α denote the load factor of the hash

table during a particular operation. Then the expected number of I/Os for that operation

is

Cbp = 1 +O

((
k − 1

e2/3(1− α)2B

)(k−1)/2
)
.

Proof : Consider an operation on key x. We need to bound p(x, j), the probability that

the aligned block I(x, j) is saturated, for j > logB. Let Xi denote the random variable

indicating that the i-th key has hash value in I(x, j). Note thatX1, . . . , XN are (k−1)-wise

independent, and for each Xi we have E[Xi] = 2j/R and δ2[Xi] = 2j/R(1−2j/R) 6 2j/R.

It follows that E[X] =
∑N

i=1 E[Xi] = 2jN/R = α2j and δ2[X] =
∑N

i=1 δ
2[Xi] 6 2jN/R =

α2j. Setting µ = α2j, T = (1− α)2j, C = 2j > max{k, δ2[X]} in Lemma 3.3, we derive a

bound on p(x, j):

p(x, j) = Pr[X − α2j > (1− α)2j] 6

(
k − 1

e2/3(1− α)22j

)(k−1)/2

. (3.4)

Plugging (3.4) into Lemma 3.2:

Cbp 6 1 +

logR∑
j=1+logB

(2j+2/B)p(x, j)

6 1 +

logR∑
j=1+logB

2j+2

B
·
(

k − 1

e2/3(1− α)22j

)(k−1)/2

6 1 +O

((
k − 1

e2/3(1− α)2B

)(k−1)/2
)
.

The last inequality uses that fact that the terms in the sum are geometrically decreasing

when k > 5, and hence the sum is dominated by the first term. ut

Remark: Since a k-wise independent hash function is also k′-wise independent for all

k′ > k, the bound in Theorem 3.4 is actually 1 +O

(
min56k′6k

(
k′−1

e2/3(1−α)2B

)(k′−1)/2
)

.

Theorem 3.4 immediately leads to the following corollaries.

5-wise independence The minimum independence allowed in Theorem 3.4 is 5. In

this case

Cbp = 1 +O

(
1

B2

)
.

Note that the dependence on the block size B is asymptotically better than 1 + Θ(1/B).

31

Ω(B)-wise independence To achieve the same bound as that of the truly random hash

function, it suffices to have k > k′ = (1− α)2B + 1. By Theorem 3.4, it follows that

Cbp = 1 +O

((
k′ − 1

e2/3(1− α)2B

)(k′−1)/2
)

= 1 +O
((
e2/3
)−(1−α)2B/2

)
6 1 + 2−Ω((1−α)2B).

3.3.3 Cache-oblivious dynamic hash tables

The standard doubling/halving strategy can be used to maintain the load factor α in the

range 1/2 − ε/2 6 α 6 1 − ε as we insert and delete keys in the hash table where ε > 0

is any small constant. In such a range the expected I/O cost per operation is 1 + 1/2Ω(B)

I/Os using the blocked probing scheme described above. In particular, we always use a

hash table of size R that is a power of 2. Let g : [U]→ [U] be a “mother” hash function.

When the table’s size is R, we take the logR least significant bits of g(x) as h(x). When

α = N/R goes beyond the range [1/2− ε/2, 1− ε] we double or halve R accordingly. This

can be done in a simple scan of the hash table in amortized O(1/B) I/Os per key, by

simply inserting keys in the order they occur in the table. The analysis uses the fact that

the keys to be inserted in a block in the resized hash table are (w.h.p.) in at most two

blocks in the original hash table. We omit the rather standard analysis.

However, the above solution has a poor space utilization. A number of methods have

been proposed that maintain a higher load factor, and also allow the rehashing to be

done incrementally; see [48] for an overview. To our best knowledge these methods are

all cache-aware — however, we now describe how they can be made cache-oblivious while

maintaining the load factor of α = 1 − Θ(ε). Suppose initially R is a power of 2 and

N > (1 − 2ε)R. Adjust ε so that εR is also a power of 2; this will not change ε by

more than a factor of 2. The idea is to split the hash table into 1/ε parts using hashing

(say, by looking at the first log(1/ε) bits of the mother hash function), where each part is

handled by a cache-oblivious hash table of size εR which stores at most (1 − ε)εR keys.

As N changes, the number of parts also changes to maintain the overall load factor at

α = 1−Θ(ε). Now this situation is analogous to a standard cache-aware hash table with

“block size” being equal to (1− ε)εR, and parts corresponding to blocks. So we may use

any cache-aware method that resizes a standard hash table, such as linear hashing [51].

These resizing techniques will split or merge parts as needed, and cost is O(1/B) I/Os

per insertion/deletion amortized. When R doubles or halves, we rebuild the entire hash

table using a new part size εR. The cache-aware resizing techniques ensures that only

1 + 1/2Ω(B′) parts are accessed upon a query in expectation, where B′ is the part size

32

g(x)−1 g(x) g(x)+1f(x)

First probe of query(x) Last probe of query(x)

g′(x)− 1 g′(x)

= ib− 1 = ib

g(x)−1 g(x) g(x)+1 f(x)

First probe of query(x)Last probe of query(x)

g′(x)− 1 g′(x)

= ib− 1 = ib

Figure 3.1: When two I/Os are needed.

B′ = (1−ε)εR. Within each part, our cache-oblivious scheme accesses 1+1/2Ω(B) blocks.

So as long as R� B, the overall query cost is still 1 + 1/2Ω(B) I/Os, as desired.

In summary, we can dynamically update our cache-oblivious hash table while main-

taining a high load factor. The additional resizing cost is only O(1/B) I/Os amortized.

Theorem 3.5 In the cache-oblivious model where the block size B is a power of 2 and

every block starts at a memory address divisible by B, there is a dynamic hash table that

supports queries in expected average tq = 1 + 1/2Ω(B) I/Os, and insertions and deletions

of keys in expected amortized 1 + O(1/B) I/Os. The load factor can be maintained at

α > 1− ε for any constant ε > 0.

Remark If a k-wise independent hash family is used, the bound on tq in the above

theorem will be replaced by the bound in Theorem 3.4.

3.4 Lower Bounds

In this section, we show that the two conditions that the analysis of blocked probing

depends upon are both necessary to achieve a 1 + 1/2Ω(B) search cost. Specifically, we

prove that when either condition is removed, the best obtainable bound for the expected

average cost of a successful search is 1 + O(α/B) I/Os. The lower bound proofs allow α

to be asymptotically small, so it means that we cannot hope to do a lot better even with

super-linear space.

3.4.1 The model

Before we present the exact lower bound statements let us first be more precise about our

model. Let [U] be the universe. The hard input we consider here is a random input in

which each key is drawn from [U] uniformly and independently. Let IU be such a random

input, and I be the set of all inputs. We will bound from below the expected average cost

of a successful search on IU where the average is taken over all keys in IU. We will only

33

consider deterministic hash tables; the lower bounds also hold for randomized hash tables

by invoking Yao’s minimax principle [57] because we are using a random input. The hash

table can employ any hash functions to distribute the input. We assume U > N3, then

with probability 1−O(1/N) all keys in IU are distinct by the birthday paradox.

We assume that all the N keys are stored in a table of size R on external memory2,

possibly with duplication. We model the search algorithm by two functions f, g : [U] →
[R]. For any x ∈ [U], f(x) is the position where the algorithm makes its first probe,

while g(x) is the position of the last probe, where key x (or one of its copies) must be

located. Note that the internal memory must be able to hold the description of f , thus

any deterministic hash table can employ a family H of at most 2M logU such functions.

Although the particular f used by the hash table of course can depend on the input IU,

the family H has to be fixed in advance. We do not have any restrictions on g, as it is

possible for the search algorithm to evaluate g after accessing external memory, except

that all g(x)’s are distinct for the N keys.

The table is partitioned into blocks of size B. For any x such that f(x) 6= g(x), define

g′(x) to be g(x) if f(x) < g(x) and g(x) + 1 if f(x) > g(x). Then if g′(x) is the first

position of a block, at least two blocks must have been accessed, though the reverse is

not necessarily true; please refer to Figure 3.1. For lower bound purposes we will assume

optimistically that the search for x needs two I/Os if g′(x) is the first position of a block,

and one I/O otherwise. Note that after this abstraction, the search cost is completely

characterized by the functions f, g and the blocking.

We will consider the following two blocking models. In the boundary-oblivious model,

the hash table knows the block size B but not their boundaries. More precisely, how the

keys are stored in the table is allowed to depend on B, but the layout should work for any

shifting s, namely when each block spans the positions from iB− s to (i+ 1)B− s− 1 for

s = 0, 1, . . . , B − 1. In the block-size-oblivious model, the blocks always start at positions

that are multiples of B but the layout is required to work for all B = 1, . . . , R. Below

we will show that in either model, the best possible expected average cost of a successful

search is 1 +O(α/B) I/Os.

3.4.2 Good inputs and bad inputs

For any I ∈ I, f ∈ H, define ηf (I) =
∑

i∈[R](|{x ∈ I | f(x) = i}| − 1). Intuitively, ηf (I)

is the number of the overflowed keys; since each position i can only hold one key, at least

ηf (I) keys in I need a second probe when the hash table uses f to decide its first probe.

We say an input I ∈ I is bad with respect to f if ηf (I) > α
4
N , otherwise it is good. Let

2Here we do not allow keys to be stored in internal memory: since the memory holds at most M keys,

it does not affect the average search cost as long as N is sufficiently larger than M .

34

If be the set of all bad inputs with respect to f , and IH =
⋂
f∈H If which is the set of

inputs that are bad with respect to all f ∈ H. In our lower bounds we will actually focus

only on the bad inputs IH. The following technical lemma ensures that almost all inputs

are in IH.

Lemma 3.6 For N > cM logU/α2 where c is some sufficiently large constant and α =

ω(N−1/2), IU is a bad input with respect to all f ∈ H with probability 1−o(1) as N →∞.

The general idea of the proof is the following: We first show that for a particular f

and a random IU, the probability that IU is good with respect to f is e−Ω(α2N). Thus by a

union bound, IU is good for at least one f ∈ H with probability at most e−Ω(α2n) ·2M logU .

So as long as N is large enough, IU will be bad with respect to all f ∈ H with high

probability.

We need the following bin-ball game, which models the way how f works on a uniformly

random input:

A bin-ball game In a (N,R, ~β) bin-ball game, we throw N balls into R bins inde-

pendently at random. The probability that a ball goes to the j-th bin is βj, where

~β = (β0, . . . , βR−1) is a prefixed distribution. Let Z denote the number of empty bins

after N balls are thrown in.

Lemma 3.7 In an (N,R, ~β) bin-ball game, Pr[Z 6 R − N + α
4
N] 6 e−Ω(α2N), where

α = N/R.

Proof : Note that if ~β is the uniform distribution, the problem is known as the occupancy

problem and the lemma can be proved using properties of martingales [57]. The same

proof actually also holds for a nonuniform ~β, so we just sketch it here:

Let Z0 be the expectation of Z before any ball is thrown in, and let the random

variable Zi be the expectation of Z after the i-th ball is thrown in (where the randomness

is from the first i balls), for i = 1, . . . , N . Note that Z0 = E[Z] and ZN = Z. It can be

verified that the sequence Z0, Z1, . . . , ZN is a martingale, and that |Zi+1 − Zi| 6 1 for all

0 6 i < N . Therefore by Azuma’s inequality, we get

Pr[Z 6 E[Z]− λN1/2] 6 2e−λ
2/2.

Note that

E[Z] =
R−1∑
i=0

(1− βi)N > R

(
R−∑R−1

i=0 βi
R

)N

= R

(
1− 1

R

)N
> R−N +

α

2
N − α

2
− (N − 1)(N − 2)

6N
α2.

35

Setting λ = (α
4
N − α

2
− (N−1)(N−2)

6N
α2)N−1/2 = Ω(αN1/2), we have E[Z] − λN1/2 >

R−N + α
4
N , hence the lemma. ut

Now we are ready to prove Lemma 3.6.

Proof :(of Lemma 3.6) Consider a particular f : [U]→ [R] and a random input IU. The

probability that a randomly chosen key x from [U] has f(x) = i is exactly |f−1(i)|/U .

This is exactly an (N,R, ~β) bin-ball game where βi = |f−1(i)|/U . Let Z be the number of

empty bins at the end of such a bin-ball game. Note that we have ηf (I) = N − (R− Z),

which, by Lemma 3.6, does not exceed α
4
N with probability at most e−Ω(α2N). Since there

are 2M logU different f ’s in H, by a union bound, the probability that IU is good for at

least one f ∈ H is at most e−Ω(α2N) ·2M logU . Thus if N > cm logU/α2 for some sufficiently

large c, this probability is e−Ω(α2N) = o(1). ut

3.4.3 Lower bound for the boundary-oblivious model

Now we prove the lower bound for the boundary-oblivious model, where the layout is

required to work for any shifting s.

Theorem 3.8 For any fixed block size B, consider any hash table that stores N uniformly

random keys. There exists some shifting s for which the hash table has an expected average

successful search cost at least 1 + α
5B

, for N sufficiently large and α = ω(N−1/2).

Proof : Consider any input I ∈ I. Suppose that the hash table uses fI ∈ H and gI on

input I. Define γ(s, I) to be the number of keys in I that need two I/Os to search when

the shifting is s, i.e., those keys x with fI(x) 6= gI(x) and g′I(x) = iB− s for some integer

i. Note that the average search cost on I is 1+γ(s, I)/N , and the expected average search

cost on a random IU is 1 +EU[γ(s, IU)]/N , which we will show to be greater than 1 + α
5B

.

Consider any I ∈ IH. Since I is bad for all f ∈ H, it is also bad for fI . Thus there are

at least α
4
N keys x in I with fI(x) 6= gI(x). For these keys, g′I(x) is defined and there is

exactly one s such that g′I(x) = iB−s for some integer i. So we have
∑B−1

s=0 γ(s, I) > α
4
N .

By Lemma 3.6, IU belongs to IH with probability 1− o(1), so

B−1∑
s=0

EU[γ(s, IU)] = EU

[
B−1∑
s=0

γ(s, IU)

]
> (1− o(1))

α

4
N >

α

5
N.

By the pigeonhole principle, we must have one s such that EU[γ(s, IU)] > αN
5B

, and the

lemma is proved. ut

3.4.4 Lower bound for the block-size-oblivious model

Next we give the lower bound under the block-size-oblivious model, in which the block

boundaries are always multiples of B, but the layout of the hash table is required to work

36

with any B. Since it is not possible to prove a lower bound of the form 1 + Ω(α/B)

for all B (that would be a lower bound in the cache-aware model), instead we show that

1+o(α/B) is not achievable, i.e., the following is false: “∀ε∃N0∃B0∀N > N0∀B > B0, the

cost is at most 1 + εα/B.” In particular, we show that this statement is false for ε = 1
17

.

Theorem 3.9 Consider any hash table that stores N uniformly random keys. For any

B0, there exists a block size B > B0 on which the expected average success search cost on

N keys is at least 1 + α
17B

, for any N sufficiently large and α = ω((log logN)−1/2).

We follow the same framework as in the proof of Theorem 3.8. Let ρ(B, I) be the

number of keys x in I with fI(x) 6= gI(x) and B|g′I(x); these keys need two I/Os to search

when the block size is B in the block-size-oblivious model. On a random IU, the expected

average search cost is 1 + EU[ρ(B, IU)]/N . From here suppose we were to continue to

follow the proof of Theorem 3.8 and consider the summation of EU[ρ(B, IU)] over all

B ∈ {B0, B0 + 1, . . . , R}. Each x contributes 1 to the summation when B = g′I(x), so

we still have
∑R

B=B0
EU[ρ(B, IU)] = Ω(αN). This, unfortunately, only guarantees the

existence of a B such that EU[ρ(B, IU)] is at least Ω(αN
R

) or Ω(αN
B logR

), where the latter

uses the fact that
∑R

B=B0
1/B = Θ(logR). Neither is strong enough to give us the desired

lower bound. Below we show how we prove Theorem 3.9 by restricting B to the primes

and a much more careful analysis.

Lemma 3.10 Let Pk be the set of all primes that are smaller than k, and let P = PR−PB0

be the set of all primes that are in the range [B0, R). For α = ω((log logN)−1/2), we have

EU

[∑
B∈P

ρ(B, IU)

]
=
∑
B∈P

EU[ρ(B, IU)] > (1− o(1))
α

16
N log logR,

as N →∞.

Note that Lemma 3.10 implies that there must be a B ∈ P such that E[ρ(B, IU)] >
α

17B
N , proving Theorem 3.9, since otherwise we would have∑

B∈P
E[ρ(B, IU)] 6

α

17
N
∑
B∈P

1

B
6

α

17
N(log logR +O(1)).

Here we use the following approximation for the prime harmonic series [65]:∑
B∈PR

1

B
= log logR +O(1).

Thus
∑

B∈P E[ρ(B, IU)] 6 α
17
N (log logR +O(1)), contradicting Lemma 3.10.

37

Proof of Lemma 3.10 In the rest of this subsection we prove Lemma 3.10. We need

the following fact from number theory. Let µ(s) denote the number of distinct prime

factors of s.

Lemma 3.11 ([65]) Let ξ(R)→∞. Then∣∣∣{l 6 R : |µ(l)− log logR| > ξ(R)
√

log logR
}∣∣∣ = O

(
R

ξ2(R)

)
.

Proof :(of Lemma 3.10) By Lemma 3.6 we know that IU belongs to IH with probability

1− o(1), so it suffices to prove that for any I ∈ IH,∑
B∈P

ρ(B, I) > (1− o(1))
α

16
N log logR.

Consider any I ∈ IH. Let G be the set of distinct g′I(x)’s for the keys x ∈ I. Let

µP (s) be the number of distinct prime factors of s that are in P . By definition µPB0
(s)

is the number of distinct prime factors of s that are in PB0 , and it follows that µ(s) =

µPB0
(s) + µP (s). Note that ρ(B, I) is at least the number of multiples of B in G, so we

have ∑
B∈P

ρ(B, I) >
∑
l∈G

µP (l) =
∑
l∈G

µ(l)−
∑
l∈G

µPB0
(l). (3.5)

Next we show that
∑

l∈G µ(l) is large. Firstly, observe that

|G| > α

8
N. (3.6)

This is because I is bad for fI , so at least α
4
N keys in I have fI(x) 6= gI(x) and thus their

g′I(x)’s are defined. The gI(x)’s for these keys must be distinct, and each g′I(x) is either

gI(x) or gI(x) + 1, so there are at least α
8
N distinct g′I(x)’s for the keys in I.

Secondly, by choosing ξ(R) = (log logR)1/4√
α

in Lemma 3.11 we get:∣∣∣∣{l 6 R : µ(l) 6

(
1− 1√

α(log logR)1/4

)
log logR

}∣∣∣∣
= O

(
αR√

log logR

)
.

Since we require α = ω(1√
log logN

) which implies αR√
log logR

= αN
α
√

log logR
= o(α

8
N) and

1√
α(log logR)1/4

= o(1), it holds that for at least |G| − o(1)α
8
N distinct l ∈ G,

µ(l) > (1− o(1)) log logR. (3.7)

By inequalities (3.6) and (3.7), we have∑
l∈G

µ(l) > (1− o(1))
α

8
N log logR. (3.8)

38

It remains to upper bound
∑

l∈G µPB0
(l). Note that for any B ∈ PB0 , the number of

integers in [R] that are divisible by B is at most R/B, so each B will be counted at most

R/B times in
∑

l∈G µPB0
(l). Hence,∑

l∈G
µPB0

(l) 6
∑
B∈PB0

R/B = R (log logB0 +O(1)) .

Therefore, as long as α >
√

32 log logB0

log logN
>
√

16 log logB0

log logN/α
, we have

log logB0 <
α2

16
log log

N

α
,

so ∑
l∈G

µPB0
(l) <

α

16
N log logR +O(R)

= (1 + o(1))
α

16
N log logR. (3.9)

Finally, combining (3.5), (3.9), and (3.8) completes the proof. ut

39

Chapter 4

Equivalence between Priority Queues and Sorting in
External Memory

4.1 Introduction

In this chapter we show that priority queues are almost computationally equivalent to

sorting in external memory. We design a priority queue that uses the sorting algorithm as a

black box, such that the update cost of the priority queue is essentially the same as the per

key I/O cost of the sorting algorithm. Our priority queue is a non-trivial generalization of

Thorup’s, which is fundamentally an internal structure. The main reasons why Thorup’s

structure does not work in the I/O model are that it cannot flush the buffers I/O-efficiently,

and it does not specify any order for performing the flush and rebalance operations.

Moreover, deletions are supported in a very different way in the I/O model; we have to

do it in a lazy fashion in order to achieve I/O-efficiency.

Our results Our main result is stated in the following theorem:

Theorem 4.1 Suppose we can sort up to N integer keys in N ·S(N)/B I/Os in external

memory, where S is a non-decreasing function. Then there exists an external priority

queue that uses linear space and supports a sequence of N insertion, deletion and findmin

operations in O(1
B

∑
i>0 S(B log(i) N

B
)) amortized I/Os per operation. The reduction uses

O(B) internal memory.

The first implication of Theorem 4.1 is that if the main memory has size Ω(B log(c) N
B

)

for any constant c, then our priority queue supports all operations with O(S(N)/B)

amortized I/O cost. This is because S(N) = 0 when N 6 M . We claim that the

reduction is tight as long as the function S grows not too slowly with N/B, even with

O(B) main memory. More precisely, we have the following corollary:

Corollary 4.2 For S(N) = Ω(2log∗ N
B), the priority queue supports all operations with

O(S(N)/B) amortized I/O cost; for S(N) = o(2log∗ N
B), the priority queue supports all

operations with O(S(N) log∗ N
B
/B) amortized I/O cost.

The first part can be obtained by plugging S(N) = 2log∗ N
B into Theorem 4.1 and showing

that the S(B log(i) N
B

)’s decrease at least exponentially with i. For the second part, we

40

simply relax all the S(B log(i) N
B

)’s to S(N). Note that 2log∗ N
B = o(log(i) N

B
) for any

constant i, so it is very unlikely that a sorting algorithm could achieve S(N) = o(2log∗ N
B),

meaning that our reduction is essentially tight.

Related results Sorting and priority queue have been well studied in the comparison-

based I/O model, in which the keys can only be accessed via comparisons. Aggarwal and

Vitter [4] showed that Θ(N
B

logM/B
N
B

) I/Os are sufficient and necessary to sort N keys in

the comparison-based I/O model. This bound is often referred to as the sorting bound.

If the comparison constraint is replaced by the weaker indivisibility constraint, there is

an Ω(min{N
B

logM/B
N
B
, N}) lower bound, and is known as the permuting bound. The two

bounds are the same when N
B

logM/B
N
B
< N ; it is conjectured that for this parameter

range, Ω(N
B

logM/B
N
B

) is still the sorting lower bound even without the indivisibility con-

straint. For N
B

logM/B
N
B
> N , the current situation in the I/O model is the same as that

in the RAM model, that is, the best upper bound is just to use the best RAM algorithm

(the current best RAM sorting algorithm is an O(N log logN) deterministic algorithm by

Han [39] and an O(N
√

log logN) randomized one by Han and Thorup [40]), and there

is no non-trivial lower bound. In view of the indivisibility lower bound, a sorting lower

bound (without any restrictions) has been considered to be more hopeful in the I/O model

than in the RAM model, and it was posed as a major open problem in [4]. Thus, our result

provides a way to approach a sorting lower bound via that of priority queues, while data

structure lower bounds seem easier to obtain than (concrete) algorithm lower bounds,

except in restricted computation models.

Since a priority queue can be used to sort N keys with N insertion and N deletemin

operations, it follows that Ω(1
B

logM/B
N
B

) is also a lower bound for the amortized I/O

cost per operation for any external priority queue, in the comparison-based I/O model.

There are many implementations that achieve this lower bound, such as the buffer tree [9],

M/B-ary heaps [26], and array heaps [20]. See the survey [72] for more details. These

implementations seem hard to translate to a priority queue-to-sorting reduction , as they

are all tree-based structures and a key must be moved Ω(logM/B
N
B

) times to “bubble up”

or “bubble down”.

Arge et al. [11] developed an cache-oblivious priority queue that achieves the sorting

bound with the tall cache assumption, that is, M is assumed to be of size at least B2.

We note that their structure can serve as a priority queue-to-sorting reduction in the

I/O model, by replacing the cache-oblivious sort with a possibly better external sorting

algorithm. The new priority queue supports all operations in O(1
B

∑
i>0 S(N (2/3)i) amor-

tized I/O cost if the sorting algorithm sorts N keys in N · S(N)/B I/Os. However, this

reduction is not tight for S(N) = O(log log N
B

), and there seems to be no easy way to get

41

rid of the tall cache assumption, even if the algorithm has the knowledge of M and B.

4.2 Structure

In this section, we will construct a priority queue that achieves the desired amortized I/O

cost in Theorem 4.1. The priority queue consists of multiple layers whose sizes vary from

N to cB, where c is some constant to be determined later. The i’th layer from above has

size Θ(B log(i) N
B

), and the priority queue has O(log∗N) layers. For the sake of simplicity

we will refer to a layer by its size. Thus the layers from the largest to the smallest are

layer N , layer B log N
B

, . . ., layer cB. Layer cB is also called head, and is stored in main

memory. Given a layer X, its upper layer and lower layer are layer B2
X
B and layer layer

B log X
B

, respectively. We use ΨX to denote B2
X
B and ΦX to denote B log X

B
. The priority

queue maintains the invariant that the keys in layer ΦX are smaller than the keys in layer

X. In particular, the minimum key is always stored in the head and can be accessed

without I/O cost.

We maintain a main memory buffer of size O(B) to accomodate incoming insertion and

deletion operations. In order to distribute keys in the memory buffer to different layers

I/O-efficiently, we maintain a structure called layer navigation list. Since this structure

will also be used in other components of the priority queue, we define it in a unified way.

Suppose we want to distribute the keys in a buffer B to t sub-structures S1, S2, . . . St. The

keys in different sub-structures are sorted relative to each other, that is, the keys in Si

are less or equal to the keys in Si+1. Each sub-structure Si is associated with a buffer Bi,
which accommodates keys transferred from B. The goal is to distribute the keys in B to

each Bi I/O-efficiently, such that the keys that go to Bi have values between the minimum

keys of Si and Si+1. A navigation list stores a set of t representatives, each representing

a sub-structure. The representative of Si, denoted ri, is a triple that stores the minimum

key of Si, the number of keys stored in Bi, and a pointer to the last non-full block of the

buffer Bi. The representatives are stored consecutively on the disk, and are sorted on the

minimum keys. The layer navigation list is built for the O(log∗N) layers, so it has size

O(log∗N). Please see Figure 4.1.

Now we will describe the structures inside a layer X except layer cB, which is always

in the main memory. First we maintain a layer buffer of size ΦX/2 to store keys flushed

from the memory buffer. The main structure of layer X consists of O(log X
ΦX

) levels with

exponentially increasing sizes. The j’th level from the bottom, denoted level j, is of size

Θ(8jΦX). We also keep the invariant that the keys in level j are less or equal to the keys

in level j + 1. We maintain a level navigation list of size Θ(log X
ΦX

), which represents

the log X
ΦX

levels. Most keys in level j are stored in Θ(8j) disjoint base sets, each of size

42

Memory buffer

Layer navigation list

Layer N

Layer B log N
B

Layer X

Layer cB (head)

Layer buffer

Level lX

Level lX − 1

level 0
Level navigation list

Level buffer of size ≤ 8jB

Base navigation list

Θ(8j) base sets of size Θ(ΦX) each

Level j

Θ(B)

BX of size
≤ ΦX/2

Figure 4.1: The components of the priority queue.

Θ(ΦX). The base sets, from left to right, are sorted relative to each other, but they are

not internally sorted. Other than the base sets, there is a level buffer of size 8jB, which

is used to temporarily accomodate keys before distributing them to the base set. We also

maintain a base navigation list of size Θ(8j) for the base sets. Note that we do not impose

the level structures on layer cB since it can fit in the main memory. The components of

the priority queue are illustrated in Figure 4.1.

Here we provide some intuition for this complicated structure. We first divide the

keys into exponentially increasing levels, which in some sense is similar to building a

heap. However, the O(logN)-level structure implies that a key may be moved O(logN)

times in its lifetime. To overcome this, we group the keys into base sets of logarithmic

sizes so that we can move more keys with the same I/O cost (we will move pointer to the

base sets rather than the base sets themselves). Finally, when a base set gets down to

level 0, we need to recursively build the structure on it, which results in the the O(log∗N)

layers.

Let lX denote the top level of layer X. We use BX to denote the layer buffer of layer

X and Bj to denote the level buffer of level j when the layer is specified. Our priority

queue maintains the following invariants for layer X:

Invariant 1 The layer buffer BX contains at most 1
2
ΦX keys; the level buffer Bj at layer

X contains at most 8jB keys.

Invariant 2 The layer buffer BX only contains keys between the minimum keys of layer

43

X and its upper layer. The level buffer Bj only contains keys between the minimum keys

of level j and its upper level.

Invariant 3 A base set in layer X has size between 1
2
ΦX and 2ΦX ; level j of layer X, for

j = 0, 1, . . . , lX − 1, has size between 2 · 8jΦX and 6 · 8jΦX , and level lX has size between

2 · 8lXΦX and 40 · 8lXΦX .

Invariant 4 The head contains at most 2cB keys.

Note that when we talk about the size of a level, we only count the keys in its base

sets and exclude the level buffer. The top level has a slightly different size range so that

the construction works for any value of X.

We say a layer buffer, a level buffer, a base set, a level or the head overflows if its size

exceeds its upper bound in Invariant 1, 3 or 4; we say a base set, a level underflows if its

size gets below the lower bound in Invariant 3.

4.3 Operations

Recall that the priority queue supports three operations: insertion, deletion, and findmin.

Since we always maintain the minimum key in the main memory (it is in either the head or

the memory buffer), the cost of a findmin operation is free. We process deletions in a lazy

fashion, that is, when a deletion comes we generate a delete signal with the corresponding

key and a time stamp, and insert the delete signal to the priority queue. In most cases

we treat the delete signals as norm insertions. We only perform the actually delete in the

head so that the current minimum key is always valid. To ensure linear space usage we

perform a global rebuild after every N/8 updates.

Our priority queue is implemented by three general operations: global rebuild, flush,

and rebalance. A global rebuild operation sorts all keys and processes all delete signals

to maintain linear size. A flush operation distributes all keys in a buffer to the buffers of

corresponding sub-structures to maintain Invariant 1. A rebalance operation moves keys

between two adjacent sub-structures to maintain Invariant 3.

Global Rebuild

We conduct the first global rebuild when the internal memory buffer is full. Then, after

each global rebuild, we set N to be the number of keys in the priority queue, and keep

it fixed until the next global rebuild. A global rebuild is triggered whenever layer N

(in fact, its top level) becomes unbalanced or the priority queue has received N/8 new

updates since the last global rebuild. We show that it takes O(N · S(N)/B) I/Os to

44

rebuild our priority queue. We first sort all keys in the priority queue and process the

delete signals. Then we scan through the remaining keys and divide them into base sets

of size ΦN , except the last base set which may be smaller. This base set is merged to

its predecessor if its size is less or equal to 1
2
ΦN . The first base set is used to construct

the lower layers, and the rest are used to construct layer N . To rebuild the O(log N
ΦN

)

levels of layer N , we scan through the base sets, and take the next 4 · 8j base sets to

build level j, for j = 0, 1, 2, Note that the base navigation list of these 4 · 8j base sets

can be constructed when we scan through the keys in the base sets. The level rebuild

process stops when we encounter an integer lN such that the number of remaining base

sets is more than 4 · 8lN , but less or equal to 4 · (8lN + 8lN+1) = 36 · 8lN . Then we take

these base sets to form the top level of layer N . After the global rebuild, level j has

size 4jΦN , and the top level lN has size between (4 · 8lN − 1
2
)ΦN and (36 · 8lN + 1

2
)ΦN .

For X = B log N
B
, B log(2) N

B
, . . . , cB, layer X are constructed recursively using the same

algorithm. All buffers are left empty.

Based on the global rebuild algorithm, the priority queue maintains the following

invariant between two global rebuilds:

Invariant 5 The top level lX in layer X is determined by the maximum lX such that

1 +

lX∑
j=0

4 · 8j 6 X

ΦX

.

The number of layers and the number of levels in each layer will not change between two

global rebuilds.

As a result of Invariant 5, we have the following lemma:

Lemma 4.3 Consider the top level lX in layer X. We have

4 · 8lXΦX 6 X 6 40 · 8lXΦX .

Flush

We define the flush operation in a unified way. Suppose we have a buffer B and k sub-

structures S1, S2, . . . , Sk. Each Si is associated with a buffer Bi, and a navigation list L

of size k is maintained for the k sub-structures. To flush the buffer B we first sort the

keys in it. Then we scan through the navigation list, and for each representative ri in

L, we read the last non-full block of Bi to the memory, and fill it with keys in B. When

the block is full, we write it back to disk, and allocate a new block. We do so until we

encounter a key that is larger than the key in ri+1. Then we update ri, and advance to

ri+1. The I/O cost for a flush is the cost of sorting a buffer of size |B| plus one I/O for

each sub-structure, so we have the following lemma:

45

Lemma 4.4 The I/O cost for flushing keys in buffer B to k sub-structures is bounded by

O(|B|S(|B|)
B

+ k).

There are three individual flush operations. A memory flush distributes keys in the

internal memory buffer to O(log∗N) layer buffers; a layer flush on layer X distributes

keys in the layer buffer to O(log X
Φ

) level buffers in the layer; and a level flush on level j

at layer X distributes keys in the level buffer to Θ(8j) base sets in the level.

Rebalance

Rebalancing the base sets Base rebalance is performed only after a level flush, since

this is the only operation that causes a base set to be unbalanced. Consider a level flush

in level j of layer X. Suppose the base set A overflows after the flush. To rebalance A we

sort and scan through the keys in it, and split it into base sets of size ΦX . If the last base

set has less than 1
2
ΦX keys we merge it into its predecessor. Note that any base set coming

out of a split has between 3
2
ΦX and 1

2
ΦX keys, so it takes at least 1

2
ΦX new updates to

any of them before it initiates a new split. Note that after the split we should update the

representatives in the base navigation list. This can be done without additional I/Os to

the level flush operation: We store all new representatives in a temporary list and rebuild

the navigation list after all overflowed base sets are rebalanced in level j. A base set never

underflows so we do not have a join operation.

Rebalancing the levels We define two level rebalance operations: level push and level

pull. Consider level j at layer X. When the number of keys in level j (except the top

level) gets to more than 6 · 8jΦX , a level push operation is performed to move some of its

base sets to the upper level. More precisely, we scan through the navigation list of level

j to find the first representative rk such that the number of keys before rk is larger than

4 · 8jΦX . Then we split the navigation list of level j around rk and attach the second

half to the navigation list of level i+ 1. Note that by moving the representatives we also

move their corresponding base sets to level j+ 1. By Invariant 3, the number of keys in a

base set is at most 2ΦX , so the new level j has size between 4 · 8jΦX and (4 · 8j + 2)ΦX .

Finally, to maintain Invariant 2 we sort level buffer Bj and move keys larger than the rk

to the level buffer Bj+1.

Conversely, if the number of keys in level j gets below 2 · 8jΦX (except the top level),

a level pull operation is performed. We cut a proportion of the navigation list of level

j+ 1 and attach it to the navigation list of level j, such that the number of keys in level i

becomes between 4 · 8jΦX and (4 · 8j − 2)ΦX . We also sort Bj+1, the buffer of level j + 1,

and move the corresponding keys to level buffer Bj.

46

Observe that after a level push/pull, the number of keys in level j is between (4 · 8j −
2)ΦX and (4 · 8j + 2)ΦX , so it takes at least Ω(8jΦX) new updates before the level needs

to be rebalanced again. The main reason that we adopt this level rebalance strategy is

that it does not touch all keys in the level; the rebalance only takes place on the base

navigation lists and the keys in the level buffers.

Rebalancing the layers When the top level lX of layer X becomes unbalanced, we

can no longer rebalance it only using navigation list. Recall that its upper level is level

0 in layer ΨX . For simplicity we will refer to the the two levels as level lX and level 0,

without specifying their layers. We also define two operations for rebalancing a layer:

layer push and layer pull. A layer push is performed when the layer overflows, that is,

the number of keys in level lX gets more than 40 · 8lXΦX . In this case we sort all keys

in level j and level 0 together, then use the first 4 · 8lXΦX keys to rebuild level j and the

rest to rebuild level 0. Recall that to rebuild a level we scan through the keys and divide

them into base sets of size ΦX , except the last one which has size between 1
2
ΦX and 3

2
ΦX ,

and then we scan through the keys again to build the base navigation list. Note that

the rebuild operation will change the minimum key in layer ΨX , so we update the layer

navigation list accordingly. Finally we sort the keys in the layer buffer BX and the level

buffer BlX , and move the keys larger than the new minimum key of layer ΨX to the level

buffer B0.

A layer pull operation is performed when the layer underflows, that is, there are less

than 2 · 8lXΦX keys in level lX . A layer pull proceeds in the same way as a layer push

does, except for the last step. Here we sort the layer buffer BΨX and the level buffer B0

and move the keys smaller than the new minimum key to the level buffer BlX . After a

layer push or pull, the number of keys in level lX is 4 · 8jΦX . By lemma 4.3, we have

40 · 8lXΦX > X, so it takes at least 2 · 8lXΦX = Ω(X) new updates to layer X before we

initiate a new push or a pull again.

Note that since we do not impose the level structure on the head layer cB, we need

to design the layer push and layer pull operations specifically for it. A layer push is

performed when the number of keys in the head gets to more than 2cB. We sort all keys

in it and level 0 of layer ΨcB, and use the first cB keys to rebuild the head and the rest to

rebuild level 0. A layer pull is performed when the head becomes empty. The operation

processes in the same way as a layer push does, except that after rebuilding both levels,

we sort the layer buffer BΨcB and the level buffer B0 together, and move the keys smaller

than the new minimum key of layer BΨcB to the head.

47

Scheduling Flush and Rebalance Operations

In order to achieve the I/O bounds in Theorem 4.1, we need to schedule the operations

delicately. Whenever the memory buffer overflows we start to update the priority queue.

This process is divided into three stages: the flush stage, the push stage, and the pull

stage. In the flush stage we flush all overflowed buffers and rebalance all unbalanced

base sets; in the push stage we use push operations to rebalance all overflowed layers and

levels. We treat delete signals as insertions in the flush stage and the push stage. In the

pull stage we deal with delete signals and use pull operations to rebalance all underflowed

layers and levels.

In the flush stage, we initialize a queue Qo to keep track of all overflowed buffers and

a doubly linked list Lo to keep track of all overflowed levels. The buffers are flushed in a

BFS fashion. First we flush the memory buffer into O(log∗N) layer buffers. After flushing

the memory buffer, we insert the representatives of the overflowed layer buffers into Qo,

from bottom to top. We also check whether the head overflows after the memory flush.

If so, we insert its representatives to the beginning of Lo. Then we start to flush the layer

buffers in Qo. Again, when flushing a layer buffer we insert the representatives of the

overflowed level buffers to Qo from bottom to top. After all layer buffers are flushed, we

begin to flush level buffers in Qo. After each level flush, we rebalance all unbalanced base

sets in this level, and if the level overflows we add the representative of this level to the

end of Lo. Note that the representatives in Lo are sorted on the minimum keys of the

levels.

After all overflowed level buffers are flushed, we enter the push stage and start to

rebalance levels in Lo in a bottom-up fashion. In each step, we take out the first level in

Lo (which is also the current lowest overflowed level) and rebalance it. Suppose this level

is level j of layer X. If it is not the top level or the head layer we perform a level push;

otherwise we perform a layer push. Then we delete the representative of this level from

Lo. A level push may cause the level buffer of level j + 1 to be overflowed, in which case

we flush it and rebalance the overflowed base sets. Then we check whether level j + 1

overflows. If so, we insert the representative of level j + 1 to the head of Lo (unless it is

already at the beginning of Lo) and perform a level push on level j+1. Otherwise we take

out a new level in Lo and continue the process. When the top level of layer N become

unbalanced we simply perform a global rebuild.

After rebalancing all levels, we enter the pull stage and start to process the delete

signals. This is done as follows. We first process all delete signals in the head. If the head

becomes empty we perform a layer pull to get more keys into the head. This may cause

higher levels or layers to underflow, and we keep performing level pulls and layer pulls

until all levels and layers are balanced. Consider a level pull or layer pull on level j of

48

layer X. After the level pull or layer pull the level buffer Bj may overflow. If so, we flush

it and rebalance the base sets when necessary. Note that this may cause the size of level

j to grow, but it will not overflow, as we will show later, so that we do not need push

operations in the pull stage. After all levels and layers are balanced, we process the delete

signals in the head again. We repeat the pull process until there are no delete signals left

in the head and the head is non-empty.

Correctness

It should be obvious that the flush and the push stage will always succeed. The following

two lemmas guarantee that the pull stage will also succeed.

Lemma 4.5 When we perform a level pull on level j, there are enough keys in level j+ 1

to rebalance level j; When we perform a layer pull on layer X, there are enough keys in

level 0 of layer ΨX to rebalance level lX .

Proof : Recall that a level pull on level j transfers at most 4 · 8jΦX keys from level j + 1

to level j. Since we always perform pull operations in a bottom-up fashion in the pull

stage, and all levels and layers are balanced before the pull stage, it follows that level

j + 1 is always balanced when performing a pull operation on level j. This implies that

level j+ 1 has at least 2 · 8j+1ΦX keys when performing a pull operation on level j, which

is sufficient to supply the level pull operation.

For a layer pull on layer X other than the head, recall that the operation transfers at

most 4·8lXΦX keys from level 0 of layer ΨX to level lX . By similar argument we know level

0 is balanced, so it has at least 2X keys. Following Lemma 4.3, we have 2X > 8 · 8lXΦX ,

so it suffices to supply the layer pull operation. The same argument also works for a layer

pull on the head, since it acquires at most cB keys from the upper level, and the level

contains at least 2cB keys. ut

Lemma 4.6 A level or a layer never overflows in the pull stage.

Proof : Consider a level pull on level j of layer X. Recall that since we move some keys

from Bj+1 to Bj, it is possible that Bj overflows and we need to perform a level flush on

level j. We claim that after this level flush, level j is still balanced. For a proof, observe

that level j has size between 4 · 8jΦX and (4 · 8j − 2)ΦX after the level pull, so it takes

at least 2 · 8jB log X
B

> 2 · 8jcB new updates before level j overflows. Since the level

pull transfers at most 8j+1B keys from Bj+1, after the level pull, Bj has less or equal to

8jB+ 8j+1B = 9 ·8jB keys. Setting c > 5 allows level j to be still balanced after the level

flush. This proves that a level never overflows in the pull stage.

49

Now consider a layer pull on layer X other than the head. Recall that we move some

keys from the layer buffer BΨX and level buffer B0 to BlX , it is possible that BlX overflows

and we need to perform a level flush on the new level lX . We claim that after this level

flush, level lX is still balanced. For a proof, observe that after the layer pull, it takes at

least 36 · 8lXB log X
B

new updates before level lX overflows. Since the layer pull transfers

at most X/2 keys from the layer buffer BΨX and at most 8B keys from the level buffer B0

to the level buffer of level lX , the level flush operation flushes at most X/2 + 8B + 8lXB

keys to level lX . By Lemma 4.3 we have

36 · 8lXΦX = 20 · 8lXΦX + 16 · 8lXΦX

> X/2 + 16 · 8lXB log
X

B
> X/2 + 8B + 8lXB.

So level lX is still balanced after the level flush. Finally, consider a layer pull on the head.

Recall that it takes at least cB new update to the head before it overflows. Since the

head acquires at most cB/2 keys from the layer buffer BΨcB , and at most 8B keys from

the level buffer B0, we can set c > 16 such that cB > cB/2 + 8B, so the head will remain

balanced after the layer pull. This proves that a layer never overflows in the pull stage.

ut

4.4 Analysis of Amortized I/O Complexity

We analyze the amortized I/O cost for each operation during N/8 updates. We will

show that the amortized I/O cost per update is bounded by O(1
B

∑
i=0 S(B log(i) N

B
)),

and Theorem 4.1 will follow.

Global rebuild Recall that the I/O cost for a global rebuild is O(N · S(N)/B) I/Os.

We claim that during N/8 updates only a constant number of global rebuilds are needed,

so the amortized I/O cost per update is bounded by O(S(N)/B). This can be verified by

the fact that a global rebuild can only be triggered by N/8 new updates or that the level

lN becomes unbalanced, and after a global rebuild it takes Ω(N) updates before level lN

becomes unbalanced again.

Flush We first analyze the I/O cost of three different flush operations. For memory

flush, we sort a set of B keys in the memory and merge them with a navigation list of

size O(log∗N). By Lemma 4.4, the I/O cost is O(log∗N). Therefore we charge O(log∗N
B

)

I/Os for each of the updates in the memory buffer. Now consider a layer flush at layer

X. Let |BX | denote the number of updates in the layer buffer. By Invariant 1 the layer

50

flush operation is performed only if |BX | > B log X
B

. There are O(log X
ΦX

) level buffers, so

by Lemma 4.4, the I/O cost is

O

(|BX |S(|BX |)
B

+ log
X

ΦX

)
= O

(|BX |S(|BX |)
B

+
|BX |
B

)
= O

(|BX |S(|BX |)
B

)
= O

(|BX |S(N)

B

)
.

Thus, we can charge O(S(N)/B) I/Os for each of the B updates in the layer buffer.

Next, consider a level flush at level j in layer X. Let |Bj| denote the number of updates

in the buffer when we perform the flush operation, and by Invariant 1 we have |Bj| > 8jB.

Recall that the size of the navigation list is Θ(8j), so by Lemma 4.4, the I/O cost is

O

(|Bj|S(|Bj|)
B

+ 8j
)

= O

(|Bj|S(|Bj|)
B

+
|Bj|
B

)
= O

(|Bj|S(|Bj|)
B

)
= O

(|Bj|S(N)

B

)
.

Therefore we can charge O(S(N)/B) I/Os for each of the |Bj| updates in the level buffer.

Rebalancing the base sets Consider a rebalance operation for a base set A at layer

X. When A overflows we sort and divide it into equal segments. So the I/O cost for a

base set rebalance can be bounded by the sorting time of O(|A|+ΦX) updates. Note that

there are at least Ω(|A|) updates to A since the last rebalance operation on it, and by

Invariant 3 we have |A| > 2ΦX . Thus, the amortized I/O cost per update is O(S(N)/B).

Rebalancing the levels We first consider a level push operation on level j of layer

X. First, the operation cuts the base navigation list of level j, takes the first half to

form a new level j, and attaches the rest to level j + 1. The I/O cost for this cut-

attach procedure is Θ(8j/B + 1), since the navigation list is sorted and stored consec-

utively on disk. Then the operation sorts and redistributes the level buffer Bj. Recall

that we always flush the level buffer before rebalancing the level, so we have |B| 6 8jB

when the level push is performed. The I/O cost for sorting and redistributing Bj is

bounded by O(8jBS(8jB)/B) = O(8jS(X)). Note that after a level push, it takes at

least Θ(8jΦX) new updates to level j before it overflows again. So during N/8 updates

at most O(N/(8jΦX)) level push operations are performed on level j. It follows that the

I/O cost of all level push operations on level j is bounded by

O

(
8jS(X) · N

8jΦX

)
= O

(
N · S(X)

B log X
B

)
.

51

We charge O(S(X)/B log X
B

) for each update and for each level in layer X. Since there

are O(log X
B

) levels in layer X, we charge O(S(X)/B) I/Os for each update in layer X.

Summing up all layers, the amortized I/O cost for each update is O(1
B

∑
i=0 S(B log(i) N

B
)).

A similar argument shows that the amortized I/O cost for the level pulls is the same,

except that the I/O cost is amortized only on the delete signals.

Rebalancing the layers Consider a layer push operation on layer X. It takes the keys

in level lX of layer X and level 0 of layer ΨX , sorts them, and rebuilds both levels. Since

both levels have size O(X), the I/O cost is O(XS(X)/B). We also note that after a

layer push operation, it takes at least Θ(X) updates to level lX before it goes unbalanced

again. That means at most O(N/X) layer rebalance operation is needed. So the I/O cost

for the layer rebalances of layer X during the N/8 updates is O(N · S(X)/B). We can

charge O(S(X)/B) I/Os for each update and each layer, and summing up all layers, it is

amortized 1
B

∑
i=0 S(B log(i) N

B
) I/Os for each update. Similar argument shows that the

amortized I/O cost for layer pulls is the same, except that the total I/O cost is amortized

only on the delete signals.

Scheduling the operations Note that in the schedule we need to pay some extra I/Os

for maintaining the queue Qo and doubly linked list Lo. We observe that an update to

Qo or Lo would trigger a flush or rebalance operation later, and the cost of a flush or

rebalance operation is at least 1 I/O. So Qo and Lo can be maintained without increasing

the asymptotic I/O cost.

52

Chapter 5

Data Structure for Summary Queries

5.1 Introduction

In this chapter we build internal and external memory data structures for two dimensional

summary queries. Recall that the summary query problem is formally defined as follow:

Let D be a data set containing N records. Each record p ∈ D is associated with a query

attribute Aq(p) and a summary attribute As(p), drawing values possibly from different

domains. A summary query specifies a range constraint [q1, q2] on Aq and the database

returns a summary on the As attribute of all records whose Aq attribute is within the

range. Note that As and Aq could be the same attribute, but it is more useful when they

are different, as the analyst is exploring the relationship between two attributes. Our goal

is to build an data structure on D so that a summary query can be answered efficiently.

As with any data structure problem, the primary measures are the query time and the

space the structure uses. The data structure should also work in external memory, where

it is stored in blocks of size B, and the query cost is measured in terms of the number of

blocks accessed (I/Os). Finally, we also would like the data structure to support updates,

i.e., insertion and deletion of records.

5.1.1 Related work on data structure for aggregation queries

In one dimension, most aggregates can be supported easily using a binary tree (a B-

tree in external memory). At each internal node of the binary tree, we simply store

the aggregate of all the records below the node. This way an aggregation query can be

answered in O(logN) time (O(logB N) I/Os in external memory).

In higher dimensions, the problem becomes more difficult and has been extensively

studied in both the computational geometry and the database communities. Solutions

are typically based on space-partitioning hierarchies, like partition trees, quadtrees and

R-trees, where an internal node stores the aggregate for its subtree. There is a large body

of work on spatial data structures; please refer to the survey by Agarwal and Erickson [3]

and the book by Samet [62]. When the data space forms an array, the data cube [36] is

an efficient structure for answering aggregation queries.

However, all the past research, whether in computational geometry or databases, has

only considered queries that return simple aggregates like count, sum, max (min), and

53

very recently top-k [1] and median [18, 46]. The problem of returning complex summaries

has not been addressed.

5.1.2 Related work on summaries

There is also a vast literature on various summaries in both the database and algorithms

communities, motivated by the fact that simple aggregates cannot well capture the data

distribution. These summaries, depending on the context and community, are also called

synopses, sketches, or compressed representations. However, all past research has focused

on how to construct a summary, either offline or in a streaming fashion, on the entire data

set. No one has considered the data structure problem where the focus is to intelligently

compute and store auxiliary information in the data structure at pre-computation time,

so that a summary on a requested subset of the records in the database can be built

quickly at query time. Since we cannot afford to look at all the requested records to build

the summary at query time, this poses new challenges that past research cannot address:

All existing construction algorithms need to at least read the data records once. The

problem of how to maintain a summary as the underlying data changes, namely under

insertions and deletions of records, has also been extensively studied. But this should not

be confused with our dynamic data structure problem. The former maintains a single

summary for the entire dynamic data set, while the latter aims at maintaining a dynamic

structure from which a summary for any queried subset can be extracted, which is more

general than the former. Of course for the former there often exist small-space solutions,

while for the data structure problem, we cannot hope for sublinear space, as a query range

may be small enough so that the summary degenerates to the raw query results.

Below we review some of the most fundamental and most studied summaries in the

literature. Let D be a bag of items, and let fD(x) be the frequency of x in D.

Heavy hitters. A heavy hitters summary allows one to extract all frequent items ap-

proximately, i.e., for a user-specified 0 < φ < 1, it returns all items x with fD(x) > φ|D|
and no items with fD(x) < (φ− ε)|D|, while an item x with (φ− ε)|D| 6 fD(x) 6 φ|D|
may or may not be returned. A heavy hitters summary of size O(1/ε) can be constructed

in one pass over D, using the MG algorithm [56] or the SpaceSaving algorithm [55].

Sketches. Various sketches have been developed as a useful tool for summarizing mas-

sive data. In this proposal, we consider the two most widely used ones: the Count-Min

sketch [22] and the AMS sketch [6]. They summarize important information about D and

can be used for a variety of purposes. Most notably, they can be used to estimate the

join size of two data sets, with self-join size being a special case. Given the Count-Min

54

sketches (resp. AMS sketches) of two data sets D1 and D2, we can estimate |D1 on D2|
within an additive error of εF1(D1)F1(D2) (resp. ε

√
F2(D1)F2(D2)) with probability at

least 1− δ [5, 22], where Fk is the k-th frequency moment of D: Fk(D) =
∑

x f
k
D(x). Note

that
√
F2(D) 6 F1(D), so the error of the AMS sketch is no larger. However, its size is

O((1/ε2) log(1/δ)), which is larger than the Count-Min sketch’s size O((1/ε) log(1/δ)), so

they are not strictly comparable. Which one is better will depend on the skewness of the

data sets. In particular, since F1(D) = |D|, the error of the Count-Min sketch does not

depend on the skewness of the data, but F2(D) could range from |D| for uniform data to

|D|2 for highly skewed data.

Quantiles. The quantiles (a.k.a. the order statistics), which generalize the median, are

important statistics about the data distribution. Recall that the φ-quantile, for 0 < φ < 1,

of a set D of items from a totally ordered universe is the one ranked at φ|D| in D (for

convenience, for the quantile problem it is usually assumed that there are no duplicates

in D). A quantile summary contains enough information so that for any 0 < φ < 1, an

ε-approximate φ-quantile can be extracted, i.e., the summary returns a φ′-quantile where

φ− ε 6 φ′ 6 φ+ ε. A quantile summary has size O(1/ε), and can be easily computed by

sorting D, and then taking the items ranked at ε|D|, 2ε|D|, 3ε|D|, . . . , |D|.

Wavelets. Wavelet representations (or just wavelets for short) take a different approach

to approximating the data distribution by borrowing ideas from signal processing. Sup-

pose the records in D are drawn from an ordered universe [U] = {1, . . . , U} and let

fD = (fD(1), . . . , fD(U)) be the frequency vector of D. Briefly speaking, in wavelet trans-

formation we take U inner products si = 〈fD,wi〉 where wi, i = 1, . . . , U are the wavelet

basis vectors (please refer to [34, 53] for details on wavelet basis vectors). The si’s are

called the wavelet coefficients of fD. If we kept all U wavelet coefficients, we would be

able to reconstruct fD exactly, but this would not be a “summary”. The observation is

that, for most real-world distributions, fD yields few wavelet coefficients with large abso-

lute values. Thus for a parameter k, even if we keep the k coefficients with the largest

absolute values, and assume all the other coefficients are zero, we can still reconstruct

fD reasonably well. In fact, it is well known that among all the choices, retaining the k

largest (in absolute value) coefficients minimizes the `2 error between the original fD and

the reconstructed one. Matias et al. [53] were the first to apply wavelet transformation

to approximating data distributions. After that, wavelets have been extensively studied

[31, 33, 34, 38, 54, 71], and have been shown to be highly effective at summarizing many

real-world data distributions.

All the aforementioned work studies how to construct or maintain the summary on the

55

given D. In our case, D is the As attributes of all records whose Aq attributes are within

the query range. Our goal is to design an data structure so that the desired summary on

D can be constructed efficiently without actually going through the elements of D.

5.1.3 Other related work

A few other lines of work also head to the general direction of addressing the gap between

reporting all query results and returning some simple aggregates. Lin et al. [50] and Tao

et al. [64] propose returning only a subset of the query results, called “representatives”.

But the “representatives” do not summarize the data as we do. They also only consider

skyline queries. The line of work on online aggregation [42, 45] aims at producing a random

sample of the query results at early stages of long-running queries, in particular, joins.

A random sample indeed gives a rough approximation of the data distribution, but it is

much less accurate than the summaries we consider: For heavy hitters and quantiles, a

random sample of size Θ(1/ε2) is needed [67] to achieve the same accuracy as the O(1/ε)-

sized summaries we mentioned earlier; for estimating join sizes, a random sample of size

Ω(
√
N) is required to achieve a constant approximation, which is much worse than using

the sketches [5]. Furthermore, the key difference is that they focus on query processing

techniques for joins rather than data structure issues. Correlated aggregates [32] aim at

exploring the relationship between two attributes. They are computed on one attribute

subject to a certain condition on the other. However, this condition has to be specified

in advance and the goal is to compute the aggregate in the streaming setting, thus the

problem is fundamentally different from ours.

5.1.4 Our results

To take a unified approach we classify all the summaries mentioned in Section 5.1.2 into

F1-based ones and F2-based ones. The former includes heavy hitters, the Count-Min

sketch, and quantiles, all of which provide an error guarantee of the form εF1(D) (note

that an ε-approximate quantile is a value with a rank that is off by εF1(D) from the

correct rank). The latter includes the AMS sketch and wavelets, both of which provide

an error guarantee related to F2(D).

In Section 5.2 we first design a baseline solution that works for all decomposable sum-

maries. A summary is decomposable if given the summaries for t data sets (bags of

elements) D1, . . . , Dt with error parameter ε, we can combine them together into a sum-

mary on D1] · · ·] Dt with error parameter O(ε), where] denotes multiset addition.

All the F1 and F2 based summaries have this property and thus can be plugged into this

solution. Assuming that we can combine the summaries with cost linear to their total size,

56

the resulting data structure has linear size and answers a summary query in O(sε logN)

time, where sε is the size of the summary returned. It also works in external memory,

with the query cost being O(sε
B

logN) I/Os if sε > B and O (logN/ log(B/sε)) I/Os if

sε < B. Note that this decomposable property has been exploited in many other works

on maintaining summaries in the streaming context [7, 16, 22].

In Section 5.3 we improve upon this baseline solution by identifying another, stronger

decomposable property of the F1 based summaries, which we call exponentially decom-

posable. The size of the data structure remains linear, while its query cost improves to

O(logN + sε). In external memory, the query cost is O(logB N + sε/B) I/Os. This re-

sembles the classical B-tree query cost, which includes an O(logB N) search cost and an

“output” cost of O(sε/B), whereas the output in our case is a summary of size sε. This is

clearly optimal (in the comparison model). For not-too-large summaries sε = O(B), the

query cost becomes just O(logB N), the same as that for a simple aggregation query or a

lookup on a B-tree.

In Section 5.4, we demonstrate how various summaries have the desired decomposable

or exponentially decomposable property and thus can be plugged into our data structures.

Finally we show how to support updates in Section 5.5.

5.2 A Baseline Solution

In this and the next section, we will describe our structures without instantiating with any

particular summary. Instead we just use “ε-summary” as a placeholder for any summary

with error parameter ε. Let S(ε,D) denote an ε-summary on data set D. We use sε to

denote the size of an ε-summary1.

Internal memory structure. Based on the decomposable property of a summary, a

baseline solution can be designed using standard techniques. We first describe the internal

memory structure. Sort all the N data records in the database on the Aq attribute and

partition them into N/sε groups, each of size sε. Then we build a binary tree T on top

of these groups, where each leaf (called a fat leaf) stores a group of sε records. For each

internal node u of T , let Tu denote the subtree of T rooted at u. We attach to u an

ε-summary on the As attribute of all records stored in the subtree below u. Since each

ε-summary has size sε and the number of internal nodes is O(N/sε), the total size of the

structure is O(N). To answer a query [q1, q2], we do a search on T . It is well known

that any range [q1, q2] can be decomposed into O(log(N/sε)) disjoint canonical subtrees

1Strictly speaking we should write sε,D. But as most ε-summaries have sizes independent of D, we drop

the subscript D for brevity.

57

Tu, plus at most two fat leaves that may partially overlap. We retrieve the ε-summaries

attached to the roots of these subtrees. For each of the fat leaves, we simply read all

the sε records stored there. Then we combine all of them into an O(ε)-summary for the

entire query using the decomposable property. We can adjust ε by a constant factor in

the construction to ensure that the output is an ε-summary. The total query time is thus

the time required to combine the O(log(N/sε)) summaries. For the Count-Min sketch and

AMS sketch, the combining time is linear in the total size of the summaries, so the query

time is O(sε logN). For the quantile summary and heavy hitters summary the query time

becomes O(sε logN log logN)2 as we need to merge O(log(N/sε)) sorted lists (Details in

Section 5.4).

External memory data structure. The baseline solution easily extends to external

memory. If sε > B, then each internal node and fat leaf occupies Θ(sε/B) blocks, so we

can simply store each of them separately. The space is still linear and we load O(logN)

nodes on each query. The query cost becomes O(sε
B

logN) I/Os for the Count-Min and

AMS sketch and O(sε
B

logN logM/B logN) I/Os for the quantile and heavy hitters sum-

mary.

For sε < B, each node occupies a fraction of a block, and we can pack multiple nodes

in one block. We use a standard B-tree blocking of the tree T where each block contains

Θ(B/sε) nodes, except possibly the root block. Thus each block stores a subtree of height

Θ(log(B/sε)) of T . Then standard analysis shows that the nodes we need to access are

stored in O(logN/ log(B/sε)) blocks. This implies a query cost of O(logB/sε N) I/Os for

the Count-Min and AMS sketch and O(logB/sε N logM/B(logB/sε N)) I/Os for the quantile

and heavy hitters summary.

5.3 Optimal Data Structure for F1 Based Summaries

The baseline solution of the previous section is not that impressive: Its “output” term

has an extra O(logN) factor; in external memory, we are missing the ideal O(logB N)

term which is the main benefit of block accesses.

The main bottleneck in the baseline solution is not the search cost, but the fact that

we need to assemble O(logN) summaries, each of size sε. In the absence of additional

properties of the summary, it is impossible to make further improvement. Fortunately,

we observe that many of the F1 based summaries have what we call the exponentially

decomposable property, which allows us to assemble summaries of exponentially decreasing

2In fact, an alternative solution achieves query time O(sε logN/ log logN) by issuing sε range-quantile

queries to the data structure in [18], but this solution does not work in external memory.

58

sizes. This turns out to be the key to optimality for data structure these summaries.

Definition 5.1 (Exponentially decomposable) For 0 < α < 1, a summary S is α-

exponentially decomposable if there exists a constant c > 1, such that for any t mul-

tisets D1, . . . , Dt with their sizes satisfying F1(Di) 6 αi−1F1(D1) for i = 1, . . . , t, given

S(ε,D1),S(cε,D2) . . . ,S(ct−1ε,Dt), (1) we can construct an O(ε)-summary for D1]· · ·]
Dt; (2) the total size of S(ε,D1), . . . ,S(ct−1ε,Dt) is O(sε) and they can be combined in

O(sε) time; and (3) for any multiset D, the total size of S(ε,D), . . . ,S(ct−1ε,D) is O(sε).

Intuitively, since an F1 based summary S(ε,D) provides an error bound of ε|D|, the

total error from S(ε,D1), S(cε,D2), . . . , S(ct−1ε,Dt) is

ε|D1|+ cε|D2|+ · · ·+ ct−1ε|Dt|
6 ε|D1|+ (cα)ε|D1|+ · · ·+ (cα)t−1ε|D1|.

If we choose c such that cα < 1, then the error is bounded by O(ε|D1|), satisfying (1).

Meanwhile, the F1 based summaries usually have size sε = Θ(1/ε), so (2) and (3) can

be satisfied, too. In Section 5.4 we will formally prove the α-exponentially decomposable

property for all the F1 based summaries mentioned in Section 5.1.2.

5.3.1 Optimal internal memory structure

Let T be the binary tree built on the Aq attribute as in the previous section. Without loss

of generality we assume T is a complete balanced binary tree; otherwise we can always

add at most N dummy records to make N/sε a power of 2 so that T is complete.

We first define some notation on T . We use S(ε, u) to denote the ε-summary on the As

attribute of all records stored in u’s subtree. Fix an internal node u and a descendant v of

u, let P(u, v) to be the set of nodes on the path from u to v, excluding u. Define the left sib-

ling set of P(u, v) to be L(u, v) = {w | w is a left child and has a right sibling ∈ P(u, v)}
and similarly the right sibling set of P(u, v) to beR(u, v) = {w | w is a right child and has a left sibling ∈
P(u, v)}. To answer a query [q1, q2], we first locate the two fat leaves a and b in T that

contain q1 and q2, respectively. Let u be the lowest common ancestor of a and b. We call

P(u, a) and P(u, b) the left and respectively the right query path. We observe that the

subtrees rooted at the nodes in R(u, a)∪L(u, b) make up the canonical set for the query

range [q1, q2].

Focusing onR(u, a), let w1, . . . , wt be the nodes ofR(u, a) and let d1 < . . . < dt denote

their depths in T (the root of T is said to be at depth 0). Since T is a balanced binary

tree, we have F1(wi) 6 (1/2)di−d1F1(w1) for i = 1, . . . , t. Here we use F1(w) to denote

the first frequency moment (i.e., size) of the point set rooted at node w. Thus, if the

59

· · ·

ε-summary
(32ε)-summary

((32)
2ε)-summary

· · · · · ·

· · · · · · · · · · · ·

· ·
Query range

Figure 5.1: A schematic illustration of our internal memory structure. The grayed nodes

form the canonical decomposition of the query range, and the grayed summaries are those

we combine into the final summary for the queried data. In this example we use c = 3
2
.

summary is (1/2)-exponentially decomposable, and we have S(cdi−d1ε, wi) for i = 1, . . . , t

at our disposal, we can combine them and form an O(ε)-summary for all the data covered

by w1, . . . , wt. We do the same for L(u, b). Finally, the two fat leaves can always supply

the exact data (it is a summary with no error) of size O(sε) in the query range. Plus the

initial O(logN) search cost for locating R(u, a) and L(u, b), the query time now improves

to the optimal O(logN + sε).

It only remains to show how to supply S(cdi−d1ε, wi) for each of the wi’s. In fact, we

can afford to attach to each node u ∈ T all the summaries: S(ε, u),S(cε, u), . . .S(cqε, u)

where q is an integer such that scqε = O(1). Nicely, these summaries still have total size

O(sε) by the exponentially decomposable property, thus the space required by each node

is still O(sε) as in the previous section, and the total space remains linear. A schematic

illustration of the overall structure is shown in Figure 5.1.

Theorem 5.2 For any (1/2)-exponentially decomposable summary, a database D of N

records can be stored in an internal memory structure of linear size so that a summary

query can be answered in O(logN + sε) time.

60

5.3.2 Optimal external memory data structure

In this section we show how to achieve the O(logB N + sε/B)-I/O query cost in external

memory still with linear space. Here, the difficulty that we need to assemble O(logN)

summaries lingers. In internal memory, we managed to get around it by the exponentially

decomposable property so that the total size of these summaries is O(sε). However, they

still reside in O(logN) separate nodes. If we still use a standard B-tree blocking, for sε >

B we need to access Ω(logN) blocks; for sε < B, we need to access Ω(logN/ log(B/sε))

blocks, neither of which is optimal. Below we first show how to achieve the optimal query

cost by increasing the space to super-linear, then propose a packed structure to reduce

the space back to linear.

Consider an internal node u and one of its descendants v. Let the sibling sets R(u, v)

and L(u, v) be as previously defined. In the following we only describe how to handle the

R(u, v)’s; we will do the same for the L(u, v)’s. SupposeR(u, v) contains nodes w1, . . . , wt

at depths d1, . . . , dt. We define the summary set for R(u, v) with error parameter ε to be

RS(u, v, ε) = {S(ε, w1),S(cd2−d1ε, w2), . . . ,S(cdt−d1ε, wt)}.

The following two facts easily follow from the exponentially decomposable property.

Fact 1 The total size of the summaries in RS(u, v, ε) is O(sε);

Fact 2 The total size of all the summary sets RS(u, v, ε), RS(u, v, cε),. . . , RS(u, v, ctε)

is O(sε).

The data structure. We first build the binary tree T as before with a fat leaf size

of sε. Before attaching any summaries, we block T in a standard B-tree fashion so that

each block stores a subtree of T of size Θ(B), except possibly the root block which may

contain 2 to B nodes of T . The resulting blocked tree is essentially a B-tree where each leaf

occupies O(sε/B) blocks and each internal node occupies 1 block. Please see Figure 5.2

for an example of the standard B-tree blocking.

Consider an internal block B in the B-tree. Below we describe the additional structures

we attach to B. Let TB be the binary subtree of T stored in B and let rB be the root of

TB. To achieve the optimal query cost, the summaries attached to the nodes of TB that

we need to retrieve for answering any query must be stored consecutively, or in at most

O(1) consecutive chunks. Therefore, the idea is to store all the summaries for a query

path in TB together, which is the reason we introduced the summary set RS(u, v, ε). The

detailed structures that we attach to B are as follows:

1. For each internal node u ∈ TB and each leaf v in u’s subtree in TB, we store all

summaries in RS(u, v, ε) sequentially.

61

Leaf size: sε

Θ(B)

O(logB)

Figure 5.2: The standard B-tree blocking of a binary tree.

2. For each leaf v, we store the summaries in RS(rB, v, cjε) sequentially, for all j =

0, . . . , q. Recall that q is an integer such that scqε = O(1).

3. For the root rB, we store S(cjε, rB) for j = 0, . . . , q.

An illustration of the first and the second type of structures is shown in Figure 5.3.

The size of the structure can be determined as follow:

1. For each leaf v ∈ TB, there are at most O(logB) ancestors of v, so there are in total

O(B logB) such pairs (u, v). For each pair we use O(sε) space, so the space usage

is O(sεB logB).

2. For each leaf v ∈ TB we use O(sε) space, so the space usage is O(sεB).

3. For the root rB, the space usage is O(sε).

Summing up the above cases, the space for storing the summaries of any internal block

B is O(sεB logB). Note that each internal block has fanout Θ(B), and each leaf has size

Θ(sε), so there are in total at most O(N/(Bsε)) internal blocks, and thus the total space

usage is O(N logB). Next we show that this structure can indeed be used to answer

queries in the optimal O(logB N + sε/B) I/Os.

Query procedure. Given a query range [q1, q2], let a and b be the two leaves containing

q1 and q2, respectively. We focus on how to retrieve the necessary summaries for the right

sibling set R(u, a), where u is the lowest common ancestor of a and b; the left sibling

62

rB

v2

RS(rB, v2, ε)
RS(rB, v2, cε)

u

v1

RS(u, v1, ε)

Figure 5.3: The summaries we store for an internal block B.

set L(u, b) can be handled symmetrically. By the previous analysis, we need exactly the

summaries in RS(u, a, ε). Recall that R(u, a) are the right siblings of the left query path

P(u, a). Let B0, . . . ,Bl be the blocks that P(u, a) intersects from u to a. The path P(u, a)

is partitioned into l+1 segments by these l+1 blocks. Let P(u, v0),P(r1, v1), . . . ,P(rl, vl =

a) be the l + 1 segments, with ri being the root of the binary tree TBi in block Bi and vi

being a leaf of TBi , i = 0, . . . , l. Let w1, . . . , wt be the nodes in R(u, a), at depths d1, . . . , dt

of T . We claim that wi is either a node of TBk for some k ∈ {0, . . . , l}, or a right sibling

of rk for some k ∈ {0, . . . , l}, which makes wi a root of some other block. This is because

by the definition of R(u, a), we know that wi is a right child whose left sibling is in some

Bk. If wi is not in Bk, it must be the root of some other block. Recall that we need to

retrieve S(cdi−d1ε, wi) for i = 1, . . . , t. Below we show how this can be done efficiently

using our structure.

For the wi’s in the first block B0, since we have stored all summaries in RS(u, v0, ε)

sequentially for B0 (case 1.), they can be retrieved in O(1 + sε/B) I/Os.

For any wi being the root of some other block B′ not on the path B0, . . . ,Bl, since

we have stored the summaries S(cjε, wi) for j = 0, . . . , q for every block (case 3.), the

required summary S(cdi−d1ε, wi) can be retrieved in O(1+scdi−d1ε/B) I/Os. Note that the

63

number of such wi’s is bounded by O(logB N), so the total cost for retrieving summaries

for these nodes is at most O(logB N + sε/B) I/Os.

The rest of the wi’s are in B1, . . . ,Bl. Consider each Bk, k = 1, . . . , l. Recall that the

segment of the path P(u, a) in Bk is P(rk, vk), and the wi’s in Bk are exactlyR(rk, vk). We

have stored RS(rk, vk, c
jε) for Bk for all j (case 2.), so no matter at which relative depths

di − d1 the nodes in R(rk, vk) start and end, we can always find the required summary

set. Retrieving the desired summary set takes O (1 + scd′−d1ε/B) I/Os, where d′ is the

depth of the highest node in R(rk, vk). Summing over all blocks B1, . . . ,Bl, the total cost

is O(logB N + sε/B) I/Os.

Reducing the size to linear. The structure above has a super-linear size O(N logB).

Next we show how to reduce its size back to O(N) while not affecting the optimal query

cost.

Observe that the logB factor comes from case 1., where we store RS(u, v, ε) for each

internal node u and each leaf v in u’s subtree in u’s block B. Focus on B and the binary

tree TB stored in it. Abusing notation, we use Tu to denote the subtree rooted at u in TB.

Assume Tu has height h (in TB). Our idea is to pack theRS(u, v, ε)’s for some leaves v ∈ Tu
to reduce the space usage. Let ul and ur be the left and right child of u, respectively. The

first observation is that we only need to store RS(u, v, ε) for each leaf v in ul’s subtree.

This is because for any leaf v in ur’s subtree, the sibling setR(u, v) is the same asR(ur, v),

so RS(u, v, ε) = RS(ur, v, ε), which will be stored when considering ur in place of u. For

any leaf v in ul’s subtree, observe that the highest node in R(u, v) is ur. This means

for a node w ∈ R(u, v) with height i in tree Tu, the summary for w in RS(u, v, ε) is

S(ch−i−1ε, w). Let u′ be an internal node in ul’s subtree, and suppose u′ has kh leaves

below it. We will decide later the value of kh and, thus, the height log kh at which u′ is

chosen (the leaves are defined to be at height 0). We do the following for each u′ at height

log kh in ul’s subtree. Instead of storing the summary set RS(u, v, ε) for each leaf v in u′’s

subtree, we storeRS(u, u′, ε), which is the common prefix of all theRS(u, v, ε)’s, together

with a summary for each of the nodes in u′’s subtree. More precisely, for each node w

in u′’s subtree, if its height is i, we store a summary S(ch−i−1ε, w). All these summaries

below u′ are stored sequentially. A schematic illustration of our packed structure is shown

in Figure 5.4.

Recall that all the summary sets we store in case 1. are used to cover the top portion

of the query path P(u, v0) in block B0, i.e., RS(u, v0, ε). Clearly the packed structure

still serves this purpose: We first find the u′ which has v0 as one of its descendants. Then

we load RS(u, u′, ε), followed by the summaries S(ch−i−1, w) required in RS(u, v0, ε).

Loading RS(u, u′, ε) still takes O(1 + sε/B) I/Os, but loading the remaining individual

64

u

ur = w1ul

u′

kh

h

w2

w3

S(ε, w1)S(cε, w2)S(c2ε, w3)
One summary for each
node in u′’s subtree

Figure 5.4: A schematic illustration of our packed structure.

summaries may incur many I/Os since they may not be stored sequentially. Nevertheless,

if we ensure that all the individual summaries below u′ have total size O(sε), then loading

any subset of them does not take more than O(1 + sε/B) I/Os. Note that there are kh/2
i

nodes at height i in u′s subtree, the total size of all summaries below u′ is

log kh∑
i=0

kh
2i
sch−i−1ε. (5.1)

Thus it is sufficient to choose kh such that (5.1) is Θ(sε). Note that such a kh always

exists3: When kh = 1, (5.1) is sch−1ε = O(sε); when kh takes the maximum possible value

kh = 2h−1, the last term (when i = h) in the summation of (5.1) is sε, so (5.1) is at least

Ω(sε); every time kh doubles, (5.1) increases by at most O(sε).

It only remains to show that by employing the packed structure, the space usage for

a block is indeed O(Bsε). For a node u at height h in TB, the number of u′’s at height

log kh under u is 2h/kh. For each such u′, storing RS(u, u′, ε), as well as all the individual

summaries below u′, takes O(sε) space. So the space required for node u is O(2hsε/kh).

3We define kh in this implicit way for its generality. When instantiating into specific summaries, there

are often closed forms for kh. For example when sε = Θ(1/ε) and 1 < c < 2, kh = Θ(ch).

65

There are O(B/2h) nodes u at height h. Thus the total space required is

O

(
logB∑
h=1

2hsε/kh ·B/2h
)

= O

(
logB∑
h=1

Bsε/kh

)
.

Note that the choice of kh implies that

sε/kh = O

(
log kh∑
i=0

1

2i
sch−i−1ε

)
= O

(
h−1∑
i=0

1

2i
sch−i−1ε

)
,

so the total size of the packed structures in B is bounded by

logB∑
h=1

Bsε/kh 6 B

logB∑
h=0

h−1∑
i=0

1

2i
sch−i−1ε

= B

logB∑
h=0

h−1∑
i=0

1

2h−i−1
sciε

6 B

logB∑
i=0

sciε

logB∑
h=i

1

2h−i−1

6 2B

logB∑
i=0

sciε

= O(Bsε).

Theorem 5.3 For any (1/2)-exponentially decomposable summary, a database D of N

records can be stored in an external memory data structure of linear size so that a summary

query can be answered in O(logB N + sε/B) I/Os.

Remark. One technical subtlety is that the O(sε) combining time in internal memory

does not guarantee that we can combine the O(logN) summaries in O(sε/B) I/Os in

external memory. However if the merging algorithm only makes linear scans on the

summaries, then this is not a problem, as we shall see in Section 5.4.

5.4 Summaries

In this section we demonstrate the decomposable or exponentially decomposable proper-

ties for the summaries mentioned in Section 5.1.2. Thus, they can be used in our data

structures in Section 5.2 and 5.3.

5.4.1 Heavy hitters

Given a multiset D, let fD(x) be the frequency of x in D. The MG summary [56] with

error parameter ε consists of sε = 1/ε items and their associated counters. For any item

66

x in the counter set, the MG summary maintains an estimated count f̂D(x) such that

fD(x)− εF1(D) 6 f̂D(x) 6 fD(x); for any item x not in the counter set, it is guaranteed

that fD(x) 6 εF1(D). Thus in either case, the MG summary provides an additive εF1(D)

error: fD(x) − εF1(D) 6 f̂D(x) 6 fD(x) for any x. The SpaceSaving summary is very

similar to the MG summary except that the SpaceSaving summary provides an f̂D(x)

overestimating fD(x): fD(x) 6 f̂D(x) < fD(x) + εF1(D). Thus they clearly solve the

heavy hitters problem.

The MG summary is clearly decomposable. Below we show that it is also α-exponentially

decomposable for any 0 < α < 1. The same proof also works for the SpaceSaving sum-

mary.

Consider t multisets D1, . . . , Dt with F1(Di) 6 αi−1F1(D1) for i = 1, . . . , t. We set

c = 1/
√
α > 1. Given a series of MG summaries S(ε,D1), S(cε,D2), . . . , S(ct−1ε,Dt),

we combine them by adding up the counters for the same item. Note that the total size

of these summaries is bounded by

t−1∑
j=0

scjε =
t−1∑
j=0

1

cjε
= O(1/ε) = O(sε).

In order to analyze the error in the combined summary, let fj(x) denote the true fre-

quency of item x in Dj and f̂j(x) be the estimator of fj(x) in S(cj−1ε,Dj). The combined

summary uses
∑t

j=1 f̂j(x) to estimate the true frequency of x, which is
∑t

j=1 fj(x). Note

that

fj(x) > f̂j(x) > fj(x)− cj−1εF1(Dj)

for j = 1, . . . , t. Summing up the first inequality over all j yields
∑t

j=1 fj(x) >
∑t

j=1 f̂j(x).

For the second inequality, we have

t∑
j=1

f̂j(x) >
t∑

j=1

fj(x)−
t∑

j=1

cj−1εF1(Dj)

>
t∑

j=1

fj(x)−
t∑

j=1

(
α√
α

)j−1εF1(D1)

>
t∑

j=1

fj(x)− εF1(D1)
t∑

j=1

(
√
α)j−1

=
t∑

j=1

fj(x)−O(εF1(D1)).

Therefore the error bound is O(εF1(D1)) = O(ε(F1(D1] · · ·]Dt)).

To combine the summaries we require that each summary maintains its (item, counter)

pairs in the increasing order of items (we impose an arbitrary ordering if the items are

from an unordered domain). In this case each summary can be viewed as a sorted list

67

and we can merge the t sorted lists into a single list, where the counters for the same item

are added up. Note that if each summary is of size sε, then we need to employ a t-way

merging algorithm and it takes O(sεt log t) time in internal memory and O(sεt
B

logM/B t)

I/Os in external memory. However, when the sizes of the t summaries form a geometrically

decreasing sequence, we can repeatedly perform two-way merges in a bottom-up fashion

with linear total cost. The merging algorithm starts with an empty list, at step i, it

merges the current list with the summary S(εt+1−i, Dt+1−i). Note that in this process

every counter of S(εj, Dj) is merged j times, but since the size of S(εj, Dj) is 1
cj−1ε

, the

total running time is bounded by

t∑
j=1

j

cj−1ε
= O

(
1

ε

)
= O(sε).

In external memory we can perform the same trick and achieve the O(sε/B) I/O

bound if the smallest summary S(ct−1ε,Dt) has size 1
ct−1ε

> B; otherwise we can take

the smallest k summaries, where k is the maximum number such that the smallest k

summaries can fit in one block, and merge them in the main memory. In either case, we

can merge the t summaries in sε/B I/Os.

5.4.2 Quantiles

Recall that in the ε-approximate quantile problem, we are given a set D of N items from

a totally ordered universe, and the goal is to have a summary S(ε,D) from which for

any 0 < φ < 1, a record with rank in [(φ − ε)N, (φ + ε)N] can be extracted. It is easy

to obtain a quantile summary of size O(1/ε): We simply sort D and take an item every

εN consecutive items. Given any rank r = φN , there is always an element within rank

[r − εN, r + εN].

Below we show that quantile summaries are α-exponentially decomposable. Suppose

we are given a series of such quantile summaries S(ε1, D1),S(ε2, D2), . . . ,S(εt, Dt), for

data sets D1, . . . , Dt. We combine them by sorting all the items in these summaries. We

claim this forms an approximate quantile summary for D = D1 ∪ · · · ∪ Dt with error

at most
∑t

j=1 εjF1(Dj), that is, given a rank r, we can find an item in the combined

summary whose rank is in [r −∑t
j=1 εjF1(Dj), r +

∑t
j=1 εjF1(Dj)] in D. For an element

x in the combined summary, let yj and zj be the two consecutive elements in S(εj, Dj)

such that yj 6 x 6 zj. We define rmin
j (x) to be the rank of yj in Dj and rmax

j (x) to be

rank of zj in Dj. In other words, rmin
j (x) (resp. rmax

j (x)) is the minimum (resp. maximum)

possible rank of x in Dj. We state the following lemma that describes the properties of

rmin
j (x) and rmax

j (x):

68

Lemma 5.4 (1) For an element x in the combined summary,

t∑
j=1

rmax
j (x)−

t∑
j=1

rmin
j (x) 6

t∑
j=1

εjF1(Dj).

(2) For two consecutive elements x1 6 x2 in the combined summary,

t∑
j=1

rmin
j (x2)−

t∑
j=1

rmin
j (x1) 6

t∑
j=1

εjF1(Dj).

Proof : Since rmax
j (x) and rmin

j (x) are the local ranks of two consecutive elements in

S(εj, Dj), we have rmax
j (x) − rmin

j (x) 6 εjF1(Dj). Taking summation over all j, part (1)

of the lemma follows. We also note that if x1 and x2 are consecutive in the combined sum-

mary, rmin
j (x1) and rmin

j (x2) are local ranks of either the same element or two consecutive

elements of S(εj, Dj). In either case we have rmin
j (x2) − rmin

j (x1) 6 εjF1(Dj). Summing

over all j proves part (2) of the lemma. ut

Now for each element x in the combined summary, we compute the global minimum

rank rmin(x) =
∑t

j=1 r
min
j (x). Note that all these global ranks can be computed by

scanning the combined summary in sorted order. Given a query rank r, we find the

smallest element x with rmin(x) > r −∑t
j=1 εjF1(Dj). We claim that the actual rank

of x in D is in the range [r −∑t
j=1 εjF1(Dj), r +

∑t
j=1 εjF1(Dj)]. Indeed, we observe

that the actual rank of x in set D is in the range [
∑t

j=1 r
min
j (x),

∑t
j=1 r

max
j (x)] so we only

need to prove that this range is contained by [r −∑t
j=1 εjF1(Dj), r +

∑t
j=1 εjF1(Dj)].

The left side trivially follows from the choice of x. For the right side, let x′ be the largest

element in the new summary such that x′ 6 x. By the choice of x, we have
∑t

j=1 r
min
j (x′) <

r−∑t
j=1 εjF1(Dj). By Lemma 5.4 we have

∑t
j=1 r

min
j (x)−∑t

j=1 r
min
j (x′) 6

∑t
j=1 εjF1(Dj)

and
∑t

j=1 r
max
j (x)−∑t

j=1 r
min
j (x) 6

∑t
j=1 εjF1(Pj). Summing up these three inequalities

yields
∑t

j=1 r
max
j (x) 6 r +

∑t
j=1 εjF1(Dj), so the claim follows.

For α-exponentially decomposability, the t data sets have F1(Di) 6 αi−1F1(D1) for

i = 1, . . . , t. We choose c = 1/
√
α > 1. The summaries S(ε1, D1),S(ε2, D2), . . . ,S(εt, Dt)

have εi = ci−1ε. Therefore we can combine them with error

t∑
j=1

cj−1εF1(Dj) 6
t∑

j=1

(
α√
α

)j−1

εF1(D1)

= εF1(D1)
t∑

j=1

(√
α
)j−1

= O(εF1(D1))

= O(εF1(D1 ∪ · · · ∪Dt)).

To combine the t summaries, we notice that we are essentially merging k sorted lists

with geometrically decreasing sizes, so we can adapt the algorithm in Section 5.4.1. The

69

cost of merging the t summaries is therefore O(sε) in internal memory and O(sε/B) I/Os

in external memory. The size of combined summary is

t∑
j=1

1

cj−1ε
= O

(
1

ε

)
= O(sε).

5.4.3 The Count-Min sketch

Given a multisetD where the items are drawn from a universe [U] = {1, . . . , U}. Let fD(x)

be the frequency of x in D. The Count-Min sketch makes use of a 2-universal hash function

h : [U] → [1/ε] and a collection of 1/ε counters C[1], . . . , C[1/ε]. Then it computes

C[j] =
∑

h(x)=j fD(x) for j = 1, . . . , 1/ε. A single collection of 1/ε counters achieve a

constant success probability for a variety of estimation purposes, and the probability can

be boosted to 1−δ by using O(log(1/δ)) copies with independent hash functions. Here we

only show the decomposability of a single copy; the same result also holds for O(log(1/δ))

copies.

Given multiple Count-Min sketches with the same h (hence the same number of coun-

ters), they can be easily combined by adding up the corresponding counters. So the

Count-Min sketch is decomposable. However, for exponentially decomposability we are

dealing with t Count-Min sketches with exponentially increasing ε’s, hence different hash

functions, so they cannot be easily combined. Thus we simply put them together without

combining any counters. Although the resulting summary is not a true Count-Min sketch,

we argue that it can be used to serve all the purposes a Count-Min is supposed to serve.

More precisely, for t data sets D1, . . . , Dt with F1(Di) 6 αi−1F1(D1), we have t Count-

Min sketches S(ε,D1), . . . , S(ct−1ε,Dt). The i-th sketch S(cj−1ε,Dt) uses a hash function

hi : [U]→ [1/cj−1ε]. Again we set c = 1/
√
α. Note that the total size of all the sketches

is O(1/ε+1/cε+1/c2ε+ · · ·) = O(1/ε) = O(sε), so we only need to show that the error is

the same as what a Count-Min sketch S(ε,D1]· · ·]Dt) would provide. Below we consider

the problem of estimating inner products (join sizes), which has other applications, such

as point queries and self-join sizes, as special cases.

Let fi denote the frequency vector of Di, and let f =
∑t

i=1 fi be the frequency vector

of D = D1] . . .]Dt. The goal is to estimate inner product 〈f ,g〉 where g is the frequency

vector of some other data set. Note that when g is a standard basic vector (i.e., containing

only one “1”), 〈f ,g〉 becomes a point query; when g = f , 〈f ,g〉 is the self-join size of f .

We distinguish between two cases: (1) g is given explicitly; and (2) g is also represented

by a summary returned by our data structure, i.e., a collection of t Count-Min sketches

S(ε,G1), . . . , S(ct−1ε,Gt), where g =
∑t

i=1 gi and gi is the frequency vector of Gi. Recall

that the Count-Min sketch estimates 〈f ,g〉 with an additive error of εF1(f)F1(g), and we

will show that we can do the same when f is represented by the collection of t Count-Min

70

sketches.

Inner product with an explicit vector. For a g given explicitly, we can construct

a Count-Min sketch S(ci−1ε,g) for g with hash function hi, for i = 1, . . . , t. We observe

that 〈f ,g〉 can be expressed as
∑t

i=1〈fi,g〉, and 〈fi,g〉 can be estimated using S(ci−1ε,Di)

and S(ci−1ε,g) as described in [22] since they use the same hash function. The error is

ci−1ε||fi||1||g||1 6 (cα)i−1ε||f1||1||g||1. For c = 1/
√
α, the total error is bounded by

t∑
i=1

α(i−1)/2ε||f1||1||g||1 = O(ε||f1||1||g||1) = O (εF1(f)F1(g)) ,

as desired.

Inner product with a vector returned by a summary query. Next we consider the

case where g is also represented by a series4 of t Count-Min sketches S(ε,G1), . . . ,S(ct−1ε,Gt)

with F1(Gi) > αi−1F1(G1). We will show how to estimate 〈f ,g〉 using the two series of

sketches. This will allow the user to estimate the join size between the results of two

queries. Note that this includes the special case of estimating the self-join size of f .

In this case we will inevitably face the problem of pairing two sketches of different

sizes. To do so we need more insight into the hash functions used. Suppose 1/ε is a power

of 2. Let p be a prime within the range [U, 2U] and a, b be random numbers uniformly

chosen from {0, . . . , p− 1}. If we use the following 2-universal hash functions:

hi(x) = ((ax+ b) mod p)) mod
1

2i−1ε
, i = 1, . . . , log(1/ε),

then we observe that each bucket of hi+1 is partitioned into two buckets of hi. This means

that given a Count-Min sketch S(2i−1ε,D) constructed with hi, one can convert it to a

Count-Min sketch S(2j−1ε,D) constructed with hj for any j > i. Thus two sketches of

different sizes can still be used together by reducing the size of the larger one to match

that of the smaller one. Of course we will only get the error guarantee of the smaller

sketch, but this will not be a problem as we show later.

Now, set c = 2 and we have the sketches S(2i−1ε,Di) and S(2i−1ε,Gi) with hash

function hi, for i = 1, . . . , log(1/ε). We express 〈f ,g〉 as

〈f ,g〉 =

〈
t∑
i=1

fi,
t∑
i=1

gi

〉
=

t∑
i=1

〈fi,gi〉+
∑
i<j

〈fi,gj〉+
∑
i<j

〈gi, fj〉.

4More precisely, g is represented by two such series: one from the left query path and one from the

right query path, and so is f . But we can decompose 〈f ,g〉 into 4 subproblems by considering the cross

product of these series, where each subproblem involves only a single series of sketches for either f or

g.

71

First, 〈fi,gi〉 can be estimated using S(2i−1ε,Di) and S(2i−1ε,Gi). The error is at

most 2i−1εF1(Di)F1(Gi) 6 (2α2)i−1εF1(D1)F1(G1). It follows that
∑t

i=1〈fi,gi〉 can be

estimated with error
∑t

i=1(2α2)i−1εF1(D1)F1(G1). For α < 1/
√

2, this error is bounded

by O(εF1(D1)F1(G1)).

For 〈fi,gj〉 with i < j, we first convert S(2i−1ε,Di) to S(2j−1ε,Di), and do the esti-

mation with S(2j−1ε,Gi), which gives us an error of 2j−1εF1(Di)F1(Gi). Therefore the

error of estimating
∑

i<j〈fi,gj〉 can be bounded by

∑
i<j

2j−1ε||fi||1||gj||1 =
t−1∑
i=1

ε||fi||1
t∑

j=i+1

2j−1||gj||1

6
t−1∑
i=1

2iε||fi||1
t∑

j=i+1

(2α)j−i−1||g1||1

=
t−1∑
i=1

2iε||fi||1||g1||1
t∑

j=i+1

(2α)j−i−1.

For constant α < 1/2, we have
∑t

j=i+1(2α)j−i−1 = O(1), so the error of estimating∑
i<j〈fi,gj〉 is at most

O

(
t−1∑
i=1

2i−1ε||fi||1||g1||1
)

6 O

(
t−1∑
i=1

(2α2)i−1ε||f1||1||g1||1
)

= O(ε||f1||1||g1||1).

We can similarly bound
∑

i<j〈gi, fj〉 = O(ε||f1||1||g1||1).

This proves that Count-Min sketch is α-exponentially decomposable for any constant

0 < α < 1/2. One technicality is that our data structures only support 1/2-exponentially

decomposable summaries as described in Section 5.3. This is caused by the use of a binary

tree T . To get around the problem, we replace the binary tree T with a ternary tree,

so that subtree sizes decrease by a factor of 3 from a level to the one below. Now the

left query path may have two nodes on each level in the canonical decomposition of the

query range, and so does the right query path. This results in 4 series of sketches for

representing f and g. But this does not affect our analysis by more than a constant factor

as argued earlier.

Remark. One technical subtlety is that, since we are now making O(log2N) estima-

tions, in order to be able to add up the errors, we need all the estimations to succeed, i.e.,

stay within the claimed error bounds. To achieve a 1− δ overall success probability, each

individual estimation should succeed with probability 1− δ/ log2N , by the union bound.

Thus each Count-Min sketch S(ci−1ε,Di) we use should have size O((1/ci−1ε) log(logN
δ

)).

72

5.4.4 The AMS sketch and wavelets

Given a multiset D in which the frequency of x is fD(x), the AMS sketch computes

O((1/ε2) log(1/δ)) counters Yi =
∑

x hi(x)fD(x), where each hi : [U] → {+1,−1} is

a uniform 4-wise independent hash function (Dobra and Rusu [61] show that some 3-

wise independent hash functions also suffice). The AMS sketch is clearly decomposable.

But since it provides an error guarantee depending on F2(D), it is not exponentially

decomposable. Intuitively, the size of a data set could drop by a constant factor without

reducing its F2 significantly. More precisely, for two data sets D1 and D2 with F1(D2) 6

αF1(D1) for a constant α < 1, F2(D1)−F2(D2) may be o(F2(D1)). Thus the AMS sketch

can only be used in the baseline solution of Section 5.2.

Gilbert et al. [34] have shown that an AMS sketch of an appropriate size also in-

corporates enough information from which we can build a wavelet representation of the

underlying data set. Thus, the baseline data structure of Section 5.2 can also be used to

return a wavelet representation for the data records in the query range.

5.5 Handling Updates

If the summary itself supports updates, our data structures also support updates. In

particular, the MG summary [56], the GK summary for quantiles [37] support insertions,

while the Count-Min sketch and the AMS sketch support both insertions and deletions.

The corresponding summary data structures then also support insertions or both inser-

tions and deletions. In this section we briefly describe how we handle updates for the two

internal memory structures in Section 5.2 and 5.3. The techniques are quite standard

[58], so we just sketch the high-level ideas.

The baseline structure. We first assume that the structure of the binary tree T re-

mains unchanged during updates, then we show how to maintain its balance dynamically.

We will show how to handle insertions; deletions can be handled similarly, provided that

the summary itself supports deletions.

To do an insertion, we first search down the tree T using the new record’s Aq attribute

and locate the fat leaf v where the new record should reside. Then we insert it into v.

This new insertion affects all the summaries attached to the O(logN) nodes on the path

from the root of T to v. For each such node u, a summary on all the items stored below

u is attached, so we need to insert the new record to the summary as well. Assuming the

update cost for a single summary is O(µ), the total cost of this insertion is O(µ logN).

We can maintain the structure of T using a weight-balanced tree and partial rebuildings

[58]. For any node u ∈ T , the weight of u is defined to be the number of records stored

73

below u. Then we restrict the weight of a node u at height i to vary on the order of

Θ(2isε). The fanout of each node of T may not be 2 any more, but the weight constraint

ensures that it is still a constant. After inserting a new record into a leaf v, the weight

constraints at the ancestors of v might be violated. Then we find the highest node u where

this happens, and simply rebuild the whole subtree rooted at the parent of u. Suppose

the parent of u is at height i. We rebuild the subtree level by level. At level j, there are

2i−j summaries we need to build, each on a data set of size O(sε2
j). So building each

summary by simply inserting the records into an initially empty summary takes O(µsε2
j)

time. This is O(µsε2
i) in total for level j. Summing over all i levels, the total cost of

the rebuilding is O(µsε2
i · i) = O(µsε2

i logN). After the rebuilding, the weight of u

decreases by Θ(2isε), so the cost of the rebuilding can be charged to this weight decrease.

Since every insertion increases the weights of O(logN) nodes by one, the cost of all the

rebuildings converts to an O(µsε2
i logN/2isε · logN) = O(µ log2N) cost per insertion

amortized.

Theorem 5.5 If the summary can be updated in O(µ) time, the baseline internal memory

structure can be updated in O(µ log2N) time amortized.

Remark. In the above rebuilding algorithm, we do not assume any properties of the

summary. In fact, for all the summaries considered in this proposal, they do not have

to be built from scratch for every level. Instead, the summaries at all levels can be

constructed more efficiently in O(µsε2
i) time. This will reduce the amortized update cost

to O(µ logN).

The optimal internal memory structure for F1 based summaries. The update

procedure for the optimal internal memory structure of Theorem 5.2 is almost the same

as the baseline solution, except that at each node, we now have O(log sε) summaries with

exponentially decreasing sizes. This adds an O(log sε) factor to the cost of updating all

affected summaries upon each insertion, as well as the partial rebuilding cost. Thus we

have:

Theorem 5.6 If the summary can be updated in O(µ) time, the optimal internal memory

structure of Theorem 5.2 can be updated in O(µ log2N log sε) time amortized.

Remark. The above theorem does not assume any special properties of the summary.

Again for all the summaries considered in this proposal, the update time can be improved

to O(µ logN log sε).

74

Chapter 6

Future Directions

6.1 External Hashing

In Chapter 3 we build a cache-oblivious hash table that achieves 1 + 1/2Ω(B) query cost.

An interesting open question is that we do not yet know if tq = 1 + 1/2Ω(B) is optimal in

the cache-aware model (or in the cache-oblivious model with the two more conditions).

It is known that we can achieve tq = 1 (namely, perfect hashing) with an internal memory

of size M = Θ(N/B) [35, 49, 52]. On the other hand, external linear probing and blocked

probing achieve tq = 1 + 1/2Ω(B) with only M = Θ(B). There seems to be a tradeoff

between M and tq but this tradeoff is yet to be understood.

6.2 Summary Queries

In Chapter 5, we presented some initial positive results on supporting summary queries

natively in a database system, that many useful summaries can be extracted with almost

the same cost as computing simple aggregates. There are many interesting directions to

explore:

1. Our data structure for the F2 based summaries does not have the optimal query

cost. Can we improve it to optimal? In fact, we can partition the data in terms

of F2 so that the F2 based summaries are also exponentially decomposable, but we

meet some technical difficulties since the resulting tree T is not balanced.

2. We have only considered the case where there is only one query attribute. In general

there could be more than one query attribute and the query range could be any

spatial constraint. For example, one could ask the following queries:

(Q3) Return a summary on the salaries of all employees aged between 20 and 30

with ranks below VP.

(Q4) Return a summary on the household income distribution for the area within

50 miles from Washington, DC.

In the most general and challenging case, one could consider any SELECT-FROM-WHERE

aggregate SQL query and replace the aggregate operator with a summary operator.

75

3. Likewise, the summary could also involve more than one attribute. When the user

is interested in the joint distribution of two or more attributes, or the spatial dis-

tribution of the query results, a multi-dimensional summary would be very useful.

An example is

(Q5) What is the geographical distribution of households with annual income below

$50,000?

Note how this query serves the complementing purpose of (Q4). To summarize

multi-dimensional data, one could consider the multi-dimensional extensions of

quantiles and wavelets, as well as geometric summaries such as ε-approximations

and various clusterings. The former is useful for multiple relational attributes, while

the latter is more suitable for summarizing geometric distributions as in (Q5).

76

Bibliography

[1] P. Afshani, G. S. Brodal, and N. Zeh. Ordered and unordered top-k range reporting

in large data sets. In Proc. ACM-SIAM Symposium on Discrete Algorithms, 2011.

[2] P. Afshani, C. Hamilton, and N. Zeh. Cache-oblivious range reporting with optimal

queries requires superlinear space. In Proc. Annual Symposium on Computational

Geometry, 2009.

[3] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In

Advances in Discrete and Computational Geometry, pages 1–56. American Mathe-

matical Society, 1999.

[4] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.

[5] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join sizes

in limited storage. Journal of Computer and System Sciences, 64(3):719–747, 2002.

[6] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the

frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

[7] A. Arasu and G.S. Manku. Approximate counts and quantiles over sliding windows.

In Proc. ACM Symposium on Principles of Database Systems, 2004.

[8] L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and M. G. C.

Resende, editors, Handbook of Massive Data Sets, pages 313–358. Kluwer Academic

Publishers, 2002.

[9] L. Arge. The buffer tree: A technique for designing batched external data structures.

Algorithmica, 37(1):1–24, 2003.

[10] L. Arge, M. Bender, E. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-

oblivious priority-queue and graph algorithms. In Proc. ACM Symposium on Theory

of Computing, pages 268–276, 2002.

[11] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-

oblivious priority queue and graph algorithm applications. In Proc. ACM Symposium

on Theory of Computing, pages 268–276. ACM, 2002.

[12] L. Arge, V. Samoladas, and K. Yi. Optimal external memory planar point enclosure.

Algorithmica, 54(3):337–352, 2009.

[13] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. SIAM

Journal on Computing, 35(2):341–358, 2005.

77

[14] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu, J. Iacono, and A.

López-Ortiz. The cost of cache-oblivious searching. In Proc. IEEE Symposium on

Foundations of Computer Science, 2003.

[15] J. L. Bentley. Decomposable searching problems. Information Processing Letters,

8(5):244–251, 1979.

[16] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On synopses

for distinct-value estimation under multiset operations. In Proc. ACM SIGMOD

International Conference on Management of Data, 2007.

[17] G. S. Brodal and R. Fagerberg. Lower bounds for external memory dictionaries. In

Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 546–554, 2003.

[18] G. S. Brodal, B. Gfeller, A. G. Jørgensen, and P. Sanders. Towards optimal range

medians. Theoretical Computer Science, 2011.

[19] G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proc. ACM

Symposium on Theory of Computing, 2003.

[20] G. S. Brodal and J. Katajainen. Worst-case external-memory priority queues.

In Proc. Scandinavian Workshop on Algorithms Theory, pages 107–118. Springer-

Verlag, 1998.

[21] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of

Computer and System Sciences, 18:143–154, 1979.

[22] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-

min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[23] E. Demaine. Cache-oblivious algorithms and data structures. In EEF Summer School

on Massive Datasets. Springer Verlag, 2002.

[24] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and

R. E. Tarjan. Dynamic perfect hashing: upper and lower bounds. SIAM Journal on

Computing, 23:738–761, 1994.

[25] R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on

secondary storage. Theoretical Computer Science, 220(2):345–362, 1999.

[26] R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on

secondary storage. Theoretical Computer Science, 220(2):345–362, 1999.

[27] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing—a fast

access method for dynamic files. ACM Transactions on Database Systems, 4(3):315–

344, 1979.

78

[28] F. W. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum

spanning trees and shortest paths. In Proc. IEEE Symposium on Foundations of

Computer Science, pages 719–725, 1990.

[29] M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table with O(1) worst

case access time. Journal of the ACM, 31(3):538–544, 1984.

[30] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious al-

gorithms. In Proc. IEEE Symposium on Foundations of Computer Science, pages

285–298, 1999.

[31] M. Garofalakis and A. Kumar. Wavelet synopses for general error metrics. ACM

Transactions on Database Systems, 30(4):888–928, 2005.

[32] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over

continual data streams. In Proc. ACM SIGMOD International Conference on Man-

agement of Data, 2001.

[33] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss.

Fast, small-space algorithms for approximate histogram maintenance. In Proc. ACM

Symposium on Theory of Computing, 2002.

[34] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on

streams: One-pass summaries for approximate aggregate queries. In Proc. Interna-

tional Conference on Very Large Data Bases, 2001.

[35] G. H. Gonnet and P. Larson. External hashing with limited internal storage. Journal

of the ACM, 35(1):161–184, 1988.

[36] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-

low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing

group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1):29–

53, 1997.

[37] M. Greenwald and S. Khanna. Space-efficient online computation of quantile sum-

maries. In Proc. ACM SIGMOD International Conference on Management of Data,

2001.

[38] S. Guha, C. Kim, and K. Shim. XWAVE: Optimal and approximate extended

wavelets for streaming data. In Proc. International Conference on Very Large Data

Bases, 2004.

[39] Y. HAN. Deterministic sorting in O(n log log n) time and linear space. Journal of

Algorithms, 50(1):96–105, 2004.

[40] Y. Han and M. Thorup. Integer sorting in O(n
√

log log n) expected time and linear

79

space. In Proc. IEEE Symposium on Foundations of Computer Science, pages 135–

144. IEEE, 2002.

[41] B. He and Q. Luo. Cache-oblivious databases: Limitations and opportunities. ACM

Transactions on Database Systems, 33(2), Article 8, 2008.

[42] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In Proc. ACM

SIGMOD International Conference on Management of Data, 1997.

[43] J. M. Hellerstein, E. Koutsoupias, D. Miranker, C. H. Papadimitriou, and V. Samo-

ladas. On a model of indexability and its bounds for range queries. Journal of the

ACM, 49(1):35–55, 2002.

[44] M. S. Jensen and R. Pagh. Optimality in external memory hashing. Algorithmica,

52(3):403–411, 2008.

[45] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query

processing with the dbo engine. ACM Transactions on Database Systems, 33(4),

Article 23, 2008.

[46] A. G. Jørgensen and K. G. Larsen. Range selection and median: Tight cell probe

lower bounds and adaptive data structures. In Proc. ACM-SIAM Symposium on

Discrete Algorithms, 2011.

[47] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.

Addison-Wesley, Reading, MA, 1973.

[48] P. Larson. Dynamic hash tables. Communications of the ACM, 31(4):446–457, 1988.

[49] P. Larson. Linear hashing with separators—a dynamic hashing scheme achieving

one-access retrieval. ACM Transactions on Database Systems, 13(3):366–388, 1988.

[50] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most representative

skyline operator. In Proc. IEEE International Conference on Data Engineering, 2007.

[51] W. Litwin. Linear hashing: a new tool for file and table addressing. In Proc. Inter-

national Conference on Very Large Data Bases, pages 212–223, 1980.

[52] H. G. Mairson. The effect of table expansion on the program complexity of perfect

hash functions. BIT, 32(3):430–440, 1992.

[53] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectivity

estimation. In Proc. ACM SIGMOD International Conference on Management of

Data, 1998.

[54] Y. Matias, J. S. Vitter, and M. Wang. Dynamic maintenance of wavelet-based his-

tograms. In Proc. International Conference on Very Large Data Bases, 2000.

80

[55] A. Metwally, D. Agrawal, and A. E. Abbadi. An integrated efficient solution for

computing frequent and top-k elements in data streams. ACM Transactions on

Database Systems, 31(3):1095–1133, 2006.

[56] J. Misra and D. Gries. Finding repeated elements. Science of Computer Program-

ming, 2:143–152, 1982.

[57] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

1995.

[58] M. H. Overmars. The Design of Dynamic Data Structures. Springer-Verlag, LNCS

156, 1983.

[59] A. Pagh, R. Pagh, and M. Ružić. Linear probing with constant independence. In

Proc. ACM Symposium on Theory of Computing, 2007.

[60] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51:122–144, 2004.

[61] F. Rusu and A. Dobra. Pseudo-random number generation for sketch-based estima-

tions. ACM Transactions on Database Systems, 32(2), Article 11, 2007.

[62] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, 2006.

[63] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff–Hoeffding Bounds for Appli-

cations with Limited Independence. SIAM Journal on Discrete Mathematics, 8:223,

1995.

[64] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative skyline. In Proc.

IEEE International Conference on Data Engineering, 2009.

[65] G. Tenenbaum. Introduction to analytic and probabilistic number theory. Cambridge

Univ Press, 1995.

[66] M. Thorup. Equivalence between priority queues and sorting. Journal of the ACM,

54(6):28, 2007.

[67] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability and its Applications,

16:264–280, 1971.

[68] E. Verbin and Q. Zhang. The limits of buffering: A tight lower bound for dynamic

membership in the external memory model. In Proc. ACM Symposium on Theory of

Computing, 2010.

[69] J. S. Vitter. External memory algorithms and data structures: Dealing with MAS-

SIVE data. ACM Computing Surveys, 33(2):209–271, 2001.

[70] J. S. Vitter. Algorithms and Data Structures for External Memory. Now Publishers,

2008.

81

[71] J. S. Vitter and M. Wang. Approximate computation of multidimensional aggre-

gates of sparse data using wavelets. In Proc. SIGMOD International Conference on

Management of Data, 1999.

[72] J. S. Vitter. External memory algorithms and data structures: Dealing with massive

data. ACM Computing Surveys, 33(2):209–271, 2001.

[73] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication

and set equality. Journal of Computer and System Sciences, 22(3):265–279, 1981.

[74] A. C. Yao. Probabilistic computations: Towards a unified measure of complexity. In

Proc. IEEE Symposium on Foundations of Computer Science, 1977.

[75] K. Yi. Dynamic indexability and lower bounds for dynamic one-dimensional range

query indexes. In Proc. ACM Symposium on Principles of Database Systems, 2009.

82

