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Dictionary Problem
Store a subset S of the Universe U.

Lookup: Does x belong to S? If so, what is its 
associated data? 

Dynamic dictionary:

- Insertion: Include x into the dictionary.

- Deletion: Remove x from the dictionary.



Hashing

Idea: Store the keys in random locations. 

Use a “hash function” h to generate and 
remember random locations.
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Uniform Hashing Model
Most analyses assume h to be a truly 
random hash function, i.e., h maps each key 
independently and uniformly to the hash 
table.

Analyses match what happens on real-world 
data surprisingly well;

Mitzenmacher and Vadhan (2008) shows that 
a simple hash function can be used to 
achieved the same performance as a truly 
random hash function does, under some mild 
assumption on the randomness of the data. 



Hashing with Chaining
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Hashing with Linear Probing
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Hashing with Linear Probing
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External Hashing (Chaining)
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External Hashing 
(Linear Probing)
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External Hashing
Each block can accommodate b keys.

The cost of an operation (search, insertion) is 
the number of blocks accessed (I/Os).

Knuth: expected I/O cost per operation:

For reasonable large b, the cost is very close 
to 1.

1 + 2−Ω((1−α)2b)



Cache-Oblivious Hashing
Cache-Oblivious Model

- Proposed by Frigo et al. (1999).

- Similar to the I/O model, except that the 
algorithm does not know the memory size 
m and the block size b.

- Algorithm must be optimized for all block 
sizes.

Question: how to achieve the            bound 
without knowing b?

1 + 2−Ω(b)



Our Results
Linear probing ignoring the blocking is naturally 
cache-oblivious. However, analysis shows that 
its search cost is              I/Os.

Blocked probing (Pagh et al. 2007) achieves the 
desired            bound, under two assumptions:

- The block size b is a power of 2.

- Every block starts at a memory address 
divisible by b.

1 +Θ(α/b)

1 + 2−Ω(b)



Our Results
A lower bound shows that both conditions is 
required to achieve the             bound;

If one of the two conditions is dispersed, the 
best achievable bound is              .

Neither of these two conditions is stated in the 
cache-oblivious model, but they indeed hold on 
all real machines.

1 +Θ(α/b)

1 + 2−Ω(b)



Linear Probing ignoring the 
blocking

Let       and       denote the expected I/O 
cost for a successful and an unsuccessful 
search, respectively. For any block size  :

h(x) h(x)+1 h(x)+2

COn = 1 + (Cn − 1)/b

CO
�
n = 1 + (C �

n − 1)/b

COn CO
�
n

b

The bound is              ! 1 +Θ(α/b)



Linear Probing ignoring the 
blocking

Intuition: consider a search for   . If       hits 
the last position of some block, and this position 
is occupied, then an extra I/O is needed.

The probability that      hits the last position of 
some block is     .

The probability that this position is occupied 
is           . 
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Blocked Probing
Assuming r is a power of two.

Suppose x is stored in location   .

Define          to be equal to the position of 
the most significant bit in which       and 
differ.

             in case           .
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Blocked Probing
Let                             .

        is the aligned block of size    that 
contains      . 

I(x, j) = {i | d(x, i) ≤ j}
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Blocked Probing
Observation: under the two conditions, the 
block containing   is            .

Invariant 1: For             an operation on  
will fully traverse         before moving to 
the next  . 

Invariant 2: each key is stored as close as 
possible to      , i.e., If the number of keys 
with hash values in         is less than    , 
then   is stored in        . 
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Operations
Insertion

- For                   search for an empty 
location in         and put    there;

- If no empty location is found, search for a 
location     that contains a key    with 
hash value                  (i.e.,               ).  
Swap   and    and continue the insertion 
process with   .

- If both attempts fail, move to the next  .
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Operations
Search

- For                   inspect         until   is 
found.

- Or an empty location is found.

- Or a key    with hash value                 .

Deletion

-  Find    such that

-  Check if there is a key in                       
that can be stored in        .

j = 0, 1, 2, . . . , I(x, j) x
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Analysis of Blocked Probing
Suppose we want to query key x.

Let                                    .

We will not visit any locations outside          
where 

              .

By Chernoff bounds, 

Xj = |{y ∈ S | h(y) ∈ I(x, j)}|

E[Xj ] = α2j

Pr[Xj ≥ 2j ] ≤ 2−(1−α)2(2j−1)/2

j∗ = min{j | Xj < 2j}.
I(x, j∗),



Analysis of Blocked Probing
Assumption: b is a power of 2 and storage 
block are aligned to multiples of b.

All locations in            can be accessed in 1 
I/O.

If the search goes on to step            , the 
number of I/Os required is 

j∗ > log b
2j

∗
/b.

I(x, log b)
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(2j/b)2−(1−α)2(2j−1)/2 = 1 + 2−Ω((1−α)2b)



Lower Bounds
Neither of the two conditions is dispensable:

- The block size b is a power of 2.

- Every block starts at a memory address 
divisible by b.

 The best achievable bound is              if

- The hash table is required to work for all b.

- Or the hash table is required to work for a 
single b, but an arbitrary shifting of the 
starting position is allowed.

1 +Θ(α/b)



The Model
         : the universe.

   : a random n-key sequence drawn from 
the universe randomly and independently.

Assuming        , then w.h.p. all keys in       
are distinct by the birthday paradox.

Assume that all keys are stored in a table    
of size   on the external memory (not 
affecting the analysis).

Assume 

U = [u]

Iu

u > n3 Iu

r

r = O(n).



The Block Layout
Boundary-Oblivious Model

The hash table knows the block size b but 
not the block boundary;

A block spans from        to                  .

Block-Size-Oblivious Model

The blocks always start at positions that 
are multiples of b;

But the hash table is required to work for 
all b = 1, . . . , r.

ib− s (i+ 1)b− s− 1



The Model
The successful search for   is simulated by 
two functions:

-       is the position where the algorithm 
makes its first probe;

-       is the position of the last probe, 
where key   is stored. 

The description of    is stored in the internal 
memory.
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The Model
Observation 1: The algorithm can employ a 
family of at most              .

Observation 2: All        are distinct for the 
n keys.

Observation 3: If       and       are on 
different blocks, the search for x will cost 
two I/Os.

2m log u f �s
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The Model

g(x)−1 g(x) g(x)+1f(x)

First probe of query(x) Last probe of query(x)

g′(x) − 1 g′(x)

= ib − 1 = ib

g(x)−1 g(x) g(x)+1 f(x)

First probe of query(x)Last probe of query(x)

g′(x) − 1 g′(x)

= ib − 1 = ib

For              , let             

g�(x) =

�
g(x) if f(x) < g(x)

g(x) + 1 if f(x) > g(x)

f(x) �= g(x)

If       is the first position of a block, at least 
two I/Os are needed.           

g�(x)



Basic Idea
For a random input, number of keys that 
need a second probe is large;

For such a key  , its      and      are 
different, and thus       is defined;

Prove that at least one block layout will 
cause a large number of         to meet the 
starting position of some blocks, and these 
keys will need a second I/O to query.   

f(x) g(x)x
g�(x)

g�(x)’s



A Bin-Ball Game
Throw    balls into   bins independently.

Each ball goes to the j-th bin w.p.    .

                   prefixed.

Let    denote the number of empty bins 
after   balls are thrown in.
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A Bin-Ball Game
The bin-ball game can be used to model the 
process that a prefixed hash function   maps 
a random input   .

            is the number of keys that need a 
second probe, which is at least     w.h.p..

f
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A Bin-Ball Game
Increasing the number of hash functions 
does not help, as long as n is unbounded 
from m and b. 

For a random input   , w.h.p. at least     
keys need a second probe.   

Iu
α
4 n



Lower bound for the 
Boundary-Oblivious Model

Number of        : at least     .

For                    there exist one    such 
that                 .

Sum up (on all   and all      ) the number of 
times that a       hits the first position of 
some block: at least     .

By pigeon hole principle, there exist a   such 
that the number of         that hits the first 
position of some block is at least    . 

α
4 n

s = 0, . . . , b− 1, s
g�(x) = ib− s

s g�(x)
g�(x)
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Lower bound for the Block-
Size-Oblivious Model

Number of        : at least     .

Consider the set    which consists of all 
primes that are less than  .

Fix a        , number of keys need a second 
I/O is at least the number of          that 
are divisible by  .

α
4 n

P
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Lower bound for the Block-
Size-Oblivious Model

Sum up (on all   and all       ) the number 
of times that some       is a multiple of 
some    is at least 

      : number of distinct prime factors of  .

Lemma: at least            fraction of         
has 

The set of all         has at least     distinct 
values in  

b g�(x)
g�(x)

b �

g�(x)

µ(g�(x))

µ(s) s

s ∈ [r](1− o(1))
µ(s) = Ω(log log r).

g�(x)’s α
8 n

[r].



Lower bound for the Block-
Size-Oblivious Model

The summation

Lemma:    is the set of all primes less than  :

There exists a   , s.t. the number of         
that are multiples of   is 

�

g�(x)

µ(g�(x)) = Ω(r log log r)

P r�

b∈P
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b
= log log r +O(1)

b g�(x)’s
b Ω(r) = Ω(αnb ).



Open Questions
Is the             bound optimal?

If the internal memory size is         bits, 
we can achieve 1 I/O worst-case query cost 
(perfect hashing).

How about 

1 + 2−Ω(b)

Θ(n/b)

m = O(b)?


