
Cache-Oblivious Hashing

Zhewei Wei
Hong Kong University of Science & Technology

Joint work with Rasmus Pagh, Ke Yi
and Qin Zhang

Dictionary Problem
Store a subset S of the Universe U.

Lookup: Does x belong to S? If so, what is its
associated data?

Dynamic dictionary:

- Insertion: Include x into the dictionary.

- Deletion: Remove x from the dictionary.

Hashing

Idea: Store the keys in random locations.

Use a “hash function” h to generate and
remember random locations.

x5 x7 x1x4

x4 x5

x7 x1

x6

x2S
U

Uniform Hashing Model
Most analyses assume h to be a truly
random hash function, i.e., h maps each key
independently and uniformly to the hash
table.

Analyses match what happens on real-world
data surprisingly well;

Mitzenmacher and Vadhan (2008) shows that
a simple hash function can be used to
achieved the same performance as a truly
random hash function does, under some mild
assumption on the randomness of the data.

Hashing with Chaining

x5 x7 x1x4

x2

x6

x3

Knuth: Cn ≈ 1 +
α

2
C �

n ≈ 1 + α

α = n/r

Hashing with Linear Probing

x5 x7 x1x4

Insert x h(x)

Hashing with Linear Probing

x5 x7 x1x4

Insert

Knuth: Cn ≈ 1

2
+

1

2(1− α)

C �
n ≈ 1

2
+

1

2(1− α)2

x h(x)

x

External Hashing (Chaining)

x5 x7 x1x4

x2 x3

x6

x8

x9

x11

x10

Block size b = 3

External Hashing
(Linear Probing)

x5 x7 x1x4

x2

x3

x6

x8

x9

x11

x10

Block size b = 3

h(x3)

External Hashing
Each block can accommodate b keys.

The cost of an operation (search, insertion) is
the number of blocks accessed (I/Os).

Knuth: expected I/O cost per operation:

For reasonable large b, the cost is very close
to 1.

1 + 2−Ω((1−α)2b)

Cache-Oblivious Hashing
Cache-Oblivious Model

- Proposed by Frigo et al. (1999).

- Similar to the I/O model, except that the
algorithm does not know the memory size
m and the block size b.

- Algorithm must be optimized for all block
sizes.

Question: how to achieve the bound
without knowing b?

1 + 2−Ω(b)

Our Results
Linear probing ignoring the blocking is naturally
cache-oblivious. However, analysis shows that
its search cost is I/Os.

Blocked probing (Pagh et al. 2007) achieves the
desired bound, under two assumptions:

- The block size b is a power of 2.

- Every block starts at a memory address
divisible by b.

1 +Θ(α/b)

1 + 2−Ω(b)

Our Results
A lower bound shows that both conditions is
required to achieve the bound;

If one of the two conditions is dispersed, the
best achievable bound is .

Neither of these two conditions is stated in the
cache-oblivious model, but they indeed hold on
all real machines.

1 +Θ(α/b)

1 + 2−Ω(b)

Linear Probing ignoring the
blocking

Let and denote the expected I/O
cost for a successful and an unsuccessful
search, respectively. For any block size :

h(x) h(x)+1 h(x)+2

COn = 1 + (Cn − 1)/b

CO
�
n = 1 + (C �

n − 1)/b

COn CO
�
n

b

The bound is ! 1 +Θ(α/b)

Linear Probing ignoring the
blocking

Intuition: consider a search for . If hits
the last position of some block, and this position
is occupied, then an extra I/O is needed.

The probability that hits the last position of
some block is .

The probability that this position is occupied
is .

h(x) h(x)+1

h(x)

1/b

n/r = α

h(x)x

Blocked Probing
Assuming r is a power of two.

Suppose x is stored in location .

Define to be equal to the position of
the most significant bit in which and
differ.

 in case .

ix

h(x)
d(x, i)

d(x, i) = 0 i = h(x)

i

Blocked Probing
Let .

 is the aligned block of size that
contains .

I(x, j) = {i | d(x, i) ≤ j}

I(x, j) 2j

h(x)

0 1 2 3 4 5 6 7

x

I(x, 2)

Blocked Probing
Observation: under the two conditions, the
block containing is .

Invariant 1: For an operation on
will fully traverse before moving to
the next .

Invariant 2: each key is stored as close as
possible to , i.e., If the number of keys
with hash values in is less than ,
then is stored in .

h(x)
I(x, j)

x I(x, log b)

j = 0, . . . , x

I(x, j)
j

2j

x I(x, j)

Operations
Insertion

- For search for an empty
location in and put there;

- If no empty location is found, search for a
location that contains a key with
hash value (i.e.,).
Swap and and continue the insertion
process with .

- If both attempts fail, move to the next .

j = 0, 1, 2, . . . ,
I(x, j) x

ix� x�

h(x�) �∈ I(x, j) d(x�, ix�) > j
x x�

x�

j

Operations
Search

- For inspect until is
found.

- Or an empty location is found.

- Or a key with hash value .

Deletion

- Find such that

- Check if there is a key in
that can be stored in .

j = 0, 1, 2, . . . , I(x, j) x

x� h(x�) �∈ I(x, j)

j x ∈ I(x, j)\I(x, j − 1).

I(x, j + 1)\I(x, j)
I(x, j)

Analysis of Blocked Probing
Suppose we want to query key x.

Let .

We will not visit any locations outside
where

 .

By Chernoff bounds,

Xj = |{y ∈ S | h(y) ∈ I(x, j)}|

E[Xj] = α2j

Pr[Xj ≥ 2j] ≤ 2−(1−α)2(2j−1)/2

j∗ = min{j | Xj < 2j}.
I(x, j∗),

Analysis of Blocked Probing
Assumption: b is a power of 2 and storage
block are aligned to multiples of b.

All locations in can be accessed in 1
I/O.

If the search goes on to step , the
number of I/Os required is

j∗ > log b
2j

∗
/b.

I(x, log b)

1 +
∞�

j=1+log b

(2j/b)2−(1−α)2(2j−1)/2 = 1 + 2−Ω((1−α)2b)

Lower Bounds
Neither of the two conditions is dispensable:

- The block size b is a power of 2.

- Every block starts at a memory address
divisible by b.

 The best achievable bound is if

- The hash table is required to work for all b.

- Or the hash table is required to work for a
single b, but an arbitrary shifting of the
starting position is allowed.

1 +Θ(α/b)

The Model
 : the universe.

 : a random n-key sequence drawn from
the universe randomly and independently.

Assuming , then w.h.p. all keys in
are distinct by the birthday paradox.

Assume that all keys are stored in a table
of size on the external memory (not
affecting the analysis).

Assume

U = [u]

Iu

u > n3 Iu

r

r = O(n).

The Block Layout
Boundary-Oblivious Model

The hash table knows the block size b but
not the block boundary;

A block spans from to .

Block-Size-Oblivious Model

The blocks always start at positions that
are multiples of b;

But the hash table is required to work for
all b = 1, . . . , r.

ib− s (i+ 1)b− s− 1

The Model
The successful search for is simulated by
two functions:

- is the position where the algorithm
makes its first probe;

- is the position of the last probe,
where key is stored.

The description of is stored in the internal
memory.

f(x)

x

g(x)
x

f

The Model
Observation 1: The algorithm can employ a
family of at most .

Observation 2: All are distinct for the
n keys.

Observation 3: If and are on
different blocks, the search for x will cost
two I/Os.

2m log u f �s

g(x)�s

f(x) g(x)

The Model

g(x)−1 g(x) g(x)+1f(x)

First probe of query(x) Last probe of query(x)

g′(x) − 1 g′(x)

= ib − 1 = ib

g(x)−1 g(x) g(x)+1 f(x)

First probe of query(x)Last probe of query(x)

g′(x) − 1 g′(x)

= ib − 1 = ib

For , let

g�(x) =

�
g(x) if f(x) < g(x)

g(x) + 1 if f(x) > g(x)

f(x) �= g(x)

If is the first position of a block, at least
two I/Os are needed.

g�(x)

Basic Idea
For a random input, number of keys that
need a second probe is large;

For such a key , its and are
different, and thus is defined;

Prove that at least one block layout will
cause a large number of to meet the
starting position of some blocks, and these
keys will need a second I/O to query.

f(x) g(x)x
g�(x)

g�(x)’s

A Bin-Ball Game
Throw balls into bins independently.

Each ball goes to the j-th bin w.p. .

 prefixed.

Let denote the number of empty bins
after balls are thrown in.

n r

βj

β = (β1, . . . ,βr)

Z
n

Pr[Z ≤ r − n+
α

4
n] ≤ e−Ω(α2n)

A Bin-Ball Game
The bin-ball game can be used to model the
process that a prefixed hash function maps
a random input .

 is the number of keys that need a
second probe, which is at least w.h.p..

f
Iu

n− r + Z
α
4 n

n− r + Z

A Bin-Ball Game
Increasing the number of hash functions
does not help, as long as n is unbounded
from m and b.

For a random input , w.h.p. at least
keys need a second probe.

Iu
α
4 n

Lower bound for the
Boundary-Oblivious Model

Number of : at least .

For there exist one such
that .

Sum up (on all and all) the number of
times that a hits the first position of
some block: at least .

By pigeon hole principle, there exist a such
that the number of that hits the first
position of some block is at least .

α
4 n

s = 0, . . . , b− 1, s
g�(x) = ib− s

s g�(x)
g�(x)

α
4 n

s

αn
4b

g�(x)’s

g�(x)’s

Lower bound for the Block-
Size-Oblivious Model

Number of : at least .

Consider the set which consists of all
primes that are less than .

Fix a , number of keys need a second
I/O is at least the number of that
are divisible by .

α
4 n

P
r

b ∈ P

b

g�(x)’s

g�(x)’s

Lower bound for the Block-
Size-Oblivious Model

Sum up (on all and all) the number
of times that some is a multiple of
some is at least

 : number of distinct prime factors of .

Lemma: at least fraction of
has

The set of all has at least distinct
values in

b g�(x)
g�(x)

b �

g�(x)

µ(g�(x))

µ(s) s

s ∈ [r](1− o(1))
µ(s) = Ω(log log r).

g�(x)’s α
8 n

[r].

Lower bound for the Block-
Size-Oblivious Model

The summation

Lemma: is the set of all primes less than :

There exists a , s.t. the number of
that are multiples of is

�

g�(x)

µ(g�(x)) = Ω(r log log r)

P r�

b∈P

1

b
= log log r +O(1)

b g�(x)’s
b Ω(r) = Ω(αnb).

Open Questions
Is the bound optimal?

If the internal memory size is bits,
we can achieve 1 I/O worst-case query cost
(perfect hashing).

How about

1 + 2−Ω(b)

Θ(n/b)

m = O(b)?

